
A Reusable Component Architecture for Agent Construction �

Bryan C� Horling

Department of Computer Science

University of Massachusetts

UMass Computer Science Technical Report �������

October� ����

Abstract

A generic� Java�based component architecture �JAF� is
proposed as a basis for designing the agents used within
multi�agent systems� The goal of this design is to facilitate
code reuse and simplify agent construction� by building up
a pool of components which can be easily combined in dif�
ferent ways to produce agents with di�erent capabilities�
JAF builds upon general component models by adding ad�
ditional implementation and runtime support designed to
produce more consistent and cohesive components� The
architecture� based on Sun�s Java Beans� is explored� and
both domain independent and applied component exam�
ples are described in detail�

Keywords� Agent architectures� Agent�based

software engineering

� Overview

Component based architectures ���� ��� have recently
begun to receive more attention in the �eld of soft	
ware engineering
 They attempt to e�ectively encap	
sulate the functionality of an object while respect	
ing interface conventions� thereby enabling the cre	
ation of stand alone applications by simply plug	
ging together groups of components
 This type of
design promotes software reusability 	 the ability to
painlessly transport source code from one project to

�E�ort sponsored by the Defense Advanced Research
Projects Agency �DARPA� and Air Force Research Laboratory
Air Force Materiel Command� USAF� under agreement number
F����	
��

�	�� and by the National Science Foundation un

der Grant number IIS
��	��� and number IRI
��	���� The
U�S� Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy

right annotation thereon� Disclaimer� The views and conclu

sions contained herein are those of the authors and should not
be interpreted as necessarily representing the o�cial policies
or endorsements� either expressed or implied� of the Defense
Advanced Research Projects Agency �DARPA�� Air Force Re

search Laboratory� National Science Foundation� or the U�S�
Government�

another 	 which is a long sought after but infrequently
achieved goal of software engineering
 In this paper
we will describe such a component architecture� the
Java Agent Framework �JAF� designed for use in the
domain of agent construction


Much of the research which goes into multi	agent
systems deals with their behavior and organization�
often viewing the implementation of these concepts
as secondary
 While the intellectual contributions of
such research are clearly the more important facet�
we believe this practice has several weaknesses� both
with problems stemming from ad hoc agent construc	
tion� and in the act of construction itself


There exists a common pool of functionality that
many agents possess� such as the ability to commu	
nicate across a network� locally store and access in	
formation� and initialize their local state
 Though
individually trivial� the sum of these functions can
represent a sizable body of work which is usually
rewritten every time an agent is created
 Among sub	
groups of agents� even more functional overlap may
arise because of their common use of an operating
environment and data representation and manipula	
tion
 Rather than regenerating this support code� it
seems clear that some mechanism of reusing old code
would be very useful� if it could be made appropri	
ately domain independent


Code reuse and modularity are not new ideas in
the �eld of computer science ��� ���
 The mecha	
nism which we have implemented� though� is a level of
granularity above this
 Instead of working with sim	
ple objects� agents using our framework are built up
from reusable components
 A component is di�eren	
tiated from an object in that they are typically more
robust and self	contained� and adhere to particular
naming and behavior conventions to facilitate inter	
operability
 Component	oriented design is particu	
larly applicable to experimental heterogeneous multi	
agent systems because changes between agent vari	



ants can usually be isolated to certain functional ar	
eas like an encapsulated planner or problem solver�
replaceable modular components can therefore pro	
vide an almost plug	and	play form of testbed


JAF di�ers from some other agent construction
systems ��� ��� in that it provides the designer with a
lower level of guidance and support
 While a JAF dis	
tribution would include several working �agent com	
ponents�� these components would be an example of
how to use JAF� rather than being the framework it	
self
 We expect the agent designer using JAF to cre	
ate a specialized pool of reusable components which
meets their needs
 While this pool could quite possi	
bly be simple derivations of the included agent com	
ponents� it need not be restricted to this
 In this
way JAF provides support for creating multi	agent
systems� without limiting the paradigms� techniques
or algorithms which actually produce the agents� be	
havior


The framework which we have developed is written
in Java ���� and builds upon Sun�s Java Beans speci�	
cation ��� by strengthening inter	component relation	
ships and adding more control mechanisms
 The Java
Beans architecture was chosen as a starting point be	
cause of its clean yet powerful organization and inte	
gration mechanisms


The following sections should give a thorough
overview of why JAF was created and how it can be
used
 We will begin by describing the motivation for
this project
 The architecture section describes how
the framework is designed and operates
 Following
this� each of the components in an existing agent will
be discussed in detail� and new components will be
described
 Future improvements and additions will
also be covered


� Motivation

The motivation for JAF began with the creation of
the Multi	Agent Survivability Simulator �Mass ����

Mass is a �exible execution environment which we de	
signed to simulate the possible faulty or hostile con	
ditions under which an agent might function
 By
accurately simulating these conditions� we can then
create and test e�ective algorithms to deal with ad	
verse situations� the end result of which is to make
our multi	agent systems more robust


The simulator consists of a centralized controller
object� to which a number of external agents con	
nect
 The controller is then responsible for simulat	
ing or providing those aspects of the environment
which the agent must interact with
 These con	

trolled aspects include such things as method execu	
tion� agent knowledge� message transfer and environ	
mental constraints
 Therefore� some aspects of the
agent� such as communication and execution� must
necessarily know of the existence of the simulator

Other parts� such as problem detection and diagno	
sis� will be �live� and unaware of the simulator� to
more accurately test their behavior
 The architecture
needed for these agents should therefore isolate the
agent	dependent behavior logic from the underlying
support code which would be common to the entire
group
 A component	oriented approach satis�es this
requirement nicely


Many component designs� including Java Beans�
provide a suitable API for constructing components
but leave runtime support to the discretion of the
component designer
 Our goal is to facilitate the cre	
ation of a pool of components� which on one hand
have enough �exibility to work e�ectively and yet
are still able to work cohesively as a group
 JAF at	
tempts to strike this balance by o�ering a number
of implementation conventions and runtime services�
which will be described in the Architecture section
below


Figure �� An example agent being constructed�

� JAF Architecture

JAF was created to provide the designer with a model
of construction
 It does not provide actual compo	
nents� instead concentrating on providing direction



and conventions when constructing such components
and their higher level organization
 In the following
section� we will cover the additions JAF has made
to generic component	oriented design which support
these goals

JAF is based on the component model architec	

ture Java Beans� which provides behavior and nam	
ing speci�cations to which every component must
adhere
 Essentially� the Java Beans API is a set
of naming conventions which allow both application
construction tools and other components to manip	
ulate a component�s state and make use of its func	
tionality
 Java Beans also provides clients with a no	
tion of component	based event streams� which allow
passive� information driven relationships to exist be	
tween components

JAF�s grounding in Java Beans supplies it with a

component API and event stream model
 By them	
selves� these elements are not su�cient to meet our
design goals
 The Java Beans framework provides
a good component interaction model� but has min	
imal guidance for generating large component orga	
nizations� both in the areas of design and support
facilities
 To produce a reusable pool of more com	
plex� interdependent components� structure must be
added in several areas�

� Components requiring the presence of other
components to operate correctly should be able
to directly specify these needs


� These dependencies must be made in loose man	
ner� so a given component can seamlessly be ex	
changed with a variant


� Component description matching should be
available� enabling components to �nd their de	
pendencies at runtime


� A consistent manner of specifying and gaining
access to required data and con�guration infor	
mation is needed


� A more formal execution sequence� with behav	
ior conventions during di�erent stages� would fa	
cilitate component interactions


How each of these requirements is addressed in the
JAF architecture is covered in the following sections


��� Component Dependencies

Most of the components used within an agent rely on
the services provided by other components
 A prob	
lem solving component directing the activity of an

agent� for instance� must have access to communica	
tion and execution facilities if it is to operate cor	
rectly
 The exact nature of these facilities� however�
varies depending on the agent�s environment
 As an
example� the problem solver� which normally oper	
ates in a real world environment� would use di�erent
components when it is running as part of a Mass	
based simulation
 These di�erent components would
need to be aware of the simulation controller� and in	
teract with it as needed
 Compounding this problem�
it is desirable to have such a change be transparent�
no changes to the problem solver should be needed
regardless of what variety of communication compo	
nent is actually present
 To resolve this tension� JAF
includes facilities for loosely specifying and �nding
component dependencies


Upon initialization� each JAF component will reg	
ister its dependency list� containing descriptions of
components which must be present for the registering
component to operate
 JAF then uses this descrip	
tion to �nd and return the most closely matching
component
 For example� if the problem solver spec	
i�ed a �Communicate� dependency� it would match
both a real �Communicate� or a �Mass Communi	
cate� component� allowing the designer to simply
plug the correct communication object into the agent
without modifying the problem solving code
 Look	
ing at Figure �� one can see that the Communicate
component has a descriptor property� a characteristic
all JAF components have
 This descriptor string is
what is compared to a dependency description when
searching for matches
 This mechanism of statically
de�ning dependencies while dynamically using the
closest match at runtime is a convenient way of mak	
ing use of the capabilities provided by di�erent com	
ponents
 This ability also allows components to gen	
erate event stream connections at runtime� thereby
allowing both passive �event stream	based and ac	
tive �method	based inter	component connections to
form dynamically


��� Information Dependencies

Individual components also have information depen	
dencies� ranging from simple behavior altering �ags
to complete external data �les
 Similar to the com	
ponent dependencies described above� JAF supplies
convenient mechanisms for describing� storing and
gaining access to data dependencies
 As components
are constructed at runtime� each may register its lo	
cal data dependencies� providing the desired data�s
name� type and description
 Armed with this infor	



mation� JAF will search for the data in several places
and read in the relevant information� convert it to the
desired type� and store it for later retrieval
 Com	
ponents themselves may also write to and monitor
changes to this storage table� which allows it to serve
both as a central shared memory area and source of
reactive control
 JAF also provides easy access to an
external con�guration archive� where large free	form
textual or binary objects may be stored


The object which provides the data services de	
scribed above� named State� is itself a component
within the agent
 Because of this� we may take ad	
vantage of JAF by replacing it with an equivalent
component� if needed
 This allows us� for instance�
to seamlessly replace the generic State component
with a specialized �Mass State� component �seen in
Figure � which is able to send and receive data in	
formation with the Mass simulation controller


��� Control Flow

Although hierarchical organizations are possible�
most of the components built with JAF thus far are
organized in a peer	to	peer manner
 If no central	
ized notion of control existed� it would be di�cult
for components to actively use one another because
of race conditions caused by di�erent states of execu	
tion
 If one component attempted to call a method in
another before that component had performed some
necessary setup� unexpected results may occur


To strengthen the �ow of control within the agent�
JAF provides components with a phased view of ex	
ecution� and conventions associated with each phase
describing what activities are permitted
 Execution
begins with the initial component construction all
objects go through when they are created
 During
construction� each component is expected to register
both its component and informational dependencies

Before agent execution begins in earnest� a check is
made to ensure that all component dependencies are
satis�able
 This check is then followed by walking the
installed components through several de�ned phases


During the �rst phase� initialization� the only guar	
antee made about the system state at is that all other
components have registered successfully
 Because of
this� initialization typically will consist of each com	
ponent setting up their internal state� obtaining refer	
ences to component dependencies� and forming event
stream connections to other components


During the next phase� each component is started

The primary activity of the component should be	
gin during this stage� and signi�cant inter	component

interactions can now take place
 Examples of such
activity include a communications module setting
up server capabilities� or a problem solver analyz	
ing which goals to achieve
 Pulse delivery coupled
with event reciept reactions forms the backbone of
execution �ow within a typical agent


Our current control paradigm assumes a discrete
view of time� so the main execution phase consists
of each component being periodically pulsed
 During
each pulse� a component may perform whatever ac	
tions it deems reasonable for unit time
 From a simu	
lation standpoint� this has the advantageous side ef	
fect of being synchronizable from a centralized source
�such as the simulation controller
 Analogous to
the Mass	speci�c State component described above�
there is also a Mass	speci�c Control component which
does just this� by interpreting pulse messages arriving
from the simulation controller


JAF also o�ers the ability to reset components�
halt agent execution and control multiple threads of
execution


��� Communicate Example

class Communicate extends AgentComponent implements PropertyEventListener �
�� Normal constructor

public Communicate�� �
State�addParameterInfo��Host�� �String�� �Host IP��	 �� Data dependency
addDependency��State��	 �� Component dependency




�� Called during initialization phase
public void init�� �
state � �State�State�findComponent��State��	 �� Find State component
state�addPropertyEventListener�this�	 �� Listen to property events




�� Called during begin phase
public void begin�� � �� Open connections here 


�� Called periodically during main execution phase
public void pulse�� � �� Not used by generic Communicate 


�� Used to send messages to external hosts

public synchronized boolean sendMessage�Message m� � ��� 




Figure �� Communicate component sample code

Figure � shows portions of an example component
which make use of JAF�s capabilities
 This should
give the reader an sense of how the concepts in the
preceding sections are used in practice
 This partic	
ular component� named Communicate� is responsible
for handling all network messaging services within
the agent
 In the constructor� one can see both a data
and component dependency being registered
 Follow	
ing this are the three methods �init� begin and pulse
called by the Control component during the respec	
tive phases of execution
 In init can be seen a call to
the �ndComponent method� which searches for com	
ponents matching the given description� followed by a



call which dynamically registers Communicate as lis	
tener to State�s property event stream
 Also shown is
sendMessage� the interface used by other components
to send messages to other hosts


� An Example Agent

In this section we will explore the construction of a
generic agent and its components� using the frame	
work described above
 Each component will be de	
scribed both in terms of its behavior and capabili	
ties� as well as interactions with other components�
which should give the reader a notion of how com	
ponents are designed and operate in practice
 Inter	
esting cases where JAF capabilities are used will be
noted
 To underscore the reusability of components�
the specialized Mass agent will also be discussed �see
Figure �� with attention paid to how existing generic
components were augmented to work within our sim	
ulation environment


��� Design

The generic agent consists of � components� Commu	
nicate� Control� Execute� Log� ProblemSolver� and
State
 The ProblemSolver component encapsulates
the behavior of the agent� making use of Communi	
cate and Execute to perform messaging and action
tasks� respectively
 As discussed previously� Control
directs the initialization and activity of each compo	
nent� and State provides access to required compo	
nent references and data
 Log is used by all com	
ponents� serving as a central location for free	form
text and event logging services
 The sections below
will give a more complete view of each component�
followed by a trace through the internal activities of
the agent


����� Communicate

The Communicate component �see also Section �
�
is responsible for handling the network message ac	
tivity within the agent
 Communicate starts by using
JAF�s data services to register a need for information�
notably a host name and port number �refer to the
Properties box in Figure �
 When the component
is started� it opens up a connection to the remote
host �if speci�ed� and listens for incoming message
on the numbered port
 As messages arrive� they are
decoded and sent to any listeners registered to Com	
municate�s event stream
 Communicate also supplies
a sendMessage method� which other components may

use to send messages
 Components wishing to moni	
tor the receipt or delivery of messages need only listen
to the Communicate�s Message event stream


The Mass derivation of Communicate adds sup	
port for the simulation environment
 Minor changes
were made to support KQML ��� encoding of infor	
mation and watching for simulation	speci�c control
messages
 The pulse phase of execution� unused in
the generic Communicate� is used to deliver queued
message events to the components� since no activity
should take place until the simulator wakes up the
agent with a pulse message


����� Control

The generic Control component is identical to the one
described in the architecture section
 It is responsi	
ble for checking component dependencies� initializing
and pulsing each component� and correctly resetting
and quitting the agent when necessary


To allow the simulation controller to a�ect the local
execution within the agent� the Mass Control com	
ponent was modi�ed to enable it to listen to Com	
municate�s message event stream
 It begins by reg	
istering a component dependency on Communicate

During initialization� it uses JAF�s component ser	
vices to �nd the Communicate instance present in
the agent� and connect to its event stream
 During
runtime� it then monitors this stream for pulse� reset
and disconnect commands arriving from the central	
ized controller


����� Execute

The Execute component is responsible for performing
the large	grained actions associated with the agent�
which could range from direct responses to queries to
simply performing tasks laid out in a global sched	
ule
 Because the speci�c mechanism for executing
tasks is usually domain dependent� the generic Exe	
cute component functions more as a template� pro	
viding mechanisms for starting� tracking and abort	
ing actions� but not actually performing them
 Exe	
cute supports an Action event stream� which carries
information about actions which are started� com	
pleted or aborted


The Mass Execute component builds on the sim	
plest template described above by adding the func	
tionality needed to simulate execution
 Execute han	
dles agent actions by sending execution requests to
the simulation controller� which determines the spe	
ci�c characteristics of the simulated task
 The Exe	
cute component then makes use of the Message event



stream from Communicate to watch for the con	
troller�s noti�cation of task completion


����� Log

The Log component is a simple logging class� which
provides generic methods to facilitate both textual
and event stream logging to the standard error
stream
 Each string to be logged has associated with
it a level� assigned by the caller
 If this level is less
than or equal to Log�s internal log level� the string is
recorded� otherwise it is thrown out


����� State

The State component is identical to that described
in the architecture section
 It supports data retrieval
and storage� and supplies an event stream allow	
ing components to monitor additions� removals or
changes to local data

The Mass State component adds support for re	

mote property queries and changes by monitoring
Communicate�s Message event stream� allowing for
greater agent control by the simulation controller


����� ProblemSolver

In a typical agent� the problem solver is the domain
expert and thus acts as an instigator to other compo	
nents
 The problem solver can be any type of domain
expert� e
g
� generative planner� process program� ex	
pert system� etc
 It is generally responsible for dis	
covering and evaluating problems or goals� and de	
termining how best they can be solved or achieved

Within the generic architecture� though� the problem
solving component has been replaced with a more do	
main independent mechanism relying on pre	formed
task structures rather than complex behavioral algo	
rithms�
 The job of creating task structures for indi	
vidual agents has been delegated to a task generator
���� housed either within the centralized simulation
controller or another component local to the agent

When a simulation scenario begins� this generator is
responsible for creating the task structure� which the
agent then uses to schedules its activity by

The Mass problem solving component� then� is re	

sponsible for using the generator to construct a task
structure
 Once the structure has been obtained� it
can be run through the Design	to	Criteria scheduling

�Though we often add a component to the domain expert
problem solver that converts its internal structures to T�MS
task models� thus enabling the problem solver to interface to
the rest of the tools in the same fashion as the generic problem
solver�

system ����� which attempts to produce an execution
schedule satisfying the agent�s goal criteria
 More
sophisticated behaviors can be incorporated into the
agent by replacing this component
 As an example� in
following section a specialized RobotProblemSolver
component will replace the generic problem solver


Execute

ProblemSolver

Log

Control

Communicate

State

Network Data

Log Data

Coded Link
Composed Link
External Stream

External State

Stream Flows

Figure �� Event stream diagram for the Mass agent

��� Integration

Now that each of the individual components have
been examined� it may be useful to see how they are
combined and work with one another
 The follow	
ing example shows how a Mass	compliant agent� the
mobile robot� is constructed and run

Using an appropriate Java Beans manipulation

tool� the components are �rst joined together in
an applet� which acts as a shell holding them to	
gether �see Figure �
 Within the tool� event streams
can be sent to individual listener components� but
since much of their connectivity is represented stat	
ically within their source code� very few such con	
nections need to be added to the group
 In partic	
ular� only message and property events are sent to
Log�s generic event logging function to facilitate run	
time troubleshooting �shown as the Composed Links
in Figure �

Additional con�guration elements� such as the

agent�s name� location� etc� are placed in a con	
�guration �le
 A utility is then used to generate
the necessary command and command line param	
eters to correctly instantiate the agent
 After the
agent has started� Control performs component de	
pendency veri�cation
 It then initializes each com	
ponent� during which the bulk of the event stream
connections are created �shown as Coded Links in
Figure �
 State also gathers the runtime param	
eters at this time� �ring a property event for each
added variable
 After initialization� Control starts
each component
 All of the components� with the
exception of Communicate and the robot problem
solver� are essentially idle at this time
 Communi	
cate begins by opening a connection to the simula	
tor� followed by the expected registration handshake



which lets the simulator know a compliant agent is
connecting
 Other information� such as agent name�
and random number seed are also exchanged at this
time
 The problem solver uses a local scripted task
structure generator to produce a task structure de	
scribing its possible goals and methods of achieving
them
 In this case� it describes what activities the
robot is able to perform� and lays out what routes in
the house must be followed to perform them


The scenario continues with the simulator send	
ing a time pulse to the agent
 Communicate rec	
ognizes the pulse message in its preprocessor� and�
using State� increments the agent�s local Time prop	
erty
 Control also recognizes the pulse message� and
reacts by sending a pulse to each of the local com	
ponents
 Nothing happens in the agent at this time
because no contracts have been received
 Since no
other incoming messages have been queued� Commu	
nicate ends the time segment by acknowledging the
pulse with a message back to the simulator


When a contract message arrives at the agent� the
Communicate component sends a message event to
its listeners� which includes the robot problem solver

After determining what kind of message it is� the
problem solver can then parse the message� analyze
the contract� and possibly use Communicate to reply
with a bid
 If such a bid is later accepted� the Prob	
lemSolver will create a schedule that Execute can use
to perform actions
 Since the ProblemSolver also lis	
tens to Execute�s action event stream� it can easily
monitor the progress of the schedule� and make ad	
justments as necessary


This relatively simple example demonstrates how
the behavior of the framework is somewhat di�er	
ent than traditional programming
 The event driven
mechanism used provides the power necessary to ex	
hibit useful behaviors while maintaining clean mod	
ular separation


��� Customization

The simple agent described above can and has been
augmented in di�erent ways to provide new capa	
bilities
 The most straightforward change is to re	
place the ProblemSolver component with a more do	
main dependent variant
 For instance� a co�ee maker
problem solver could have knowledge of its resource
requirements� and attempt to coordinate over them
before beginning its execution
 A mobile robot prob	
lem solver could have knowledge of its location and
then use the scheduler to analyze its proposed task
schedule as it moves about its environment �such an

agent is seen in Figure �


Other less	intrusive additions also exist when tak	
ing advantage of the naturally decoupled nature of
the components
 For instance� using a graphical in	
terface� an evaluation criteria component could ob	
tain the user�s schedule evaluation preferences at run	
time and attach them to the task structure before
scheduling occurs
 In this case� no modi�cations to
existing components would be necessary for the agent
to exhibit signi�cantly di�erent behaviors
 Simple
statistics gathering components in an agent could be
attached to various streams to monitor the type and
content of events as they are �red
 Such informa	
tion can then be used by yet another component to
perform runtime behavior analysis


A diagnosis module ��� could also be added to the
agent
 In this case� the component could monitor the
behavior of other components and even other agents�
using this information to support diagnoses
 Some
of these diagnoses could then be used by the agent�s
local task generator to change the behavior of the
agent
 With the aid of the Communication module�
distributed diagnosis could also take place� as diag	
nosis components in di�erent agents collaborate to
recognize a particular problem


� Current � Future Work

To date� over �� JAF components have been designed
and implemented
 The Mass agent described in Sec	
tion � has been successfully implemented and used
within the Mass environment
 Four agents using a
simple problem solver were also used to simulate an
example of the multi	agent organization described by
the Warren �nancial portfolio management system
����
 Initial survivability scenarios have been tested�
by simulating execution and resource failures which
prompt behavioral responses by the agents


In addition� the agent framework and Mass simula	
tor are also being used in a more complicated multi	
agent environment ���
 The goal of this project is to
develop an intelligent home simulation environment�
where agents coordinate over resources and activities
in an e�ort to satisfy both local goals and global con	
straints
 A wide range of agents are currently being
modeled with the framework as part of this project�
including a water heater� dishwasher� mobile robot�
and co�ee pot� to name a few
 In each case� the
designer only needed to modify the problem solving
component of the framework to produce the di�erent
behaviors needed by these agents� validating in some
sense our prior ease of customization claim




In the coming months� we expect the development
of the framework to continue with the design of sur	
vivability detection and diagnosis components
 One
or more coordination components based on GPGP �

���� �� are also under development


� Conclusion

The agent framework described in the paper� JAF�
has been developed as a new model for constructing
agents
 JAF places particular emphasis on encapsu	
lation and modularity� in an attempt to promote and
facilitate code reuse which in turn can make agents
both more compatible and sophisticated
 While these
attributes are arguably desired in any application� we
feel that they are particularly useful within an multi	
agent testbeds� because these systems often employ
sets of heterogeneous agents with common subsys	
tems and interfaces

The framework itself provides support mechanisms

for control and data �ow� in addition to component
design guidelines
 Agents using JAF are composed
of a number of such components� which interact with
one another using both passive event stream moni	
toring and active method invocation
 This type of
organization allows for a wide array of implementa	
tions� while maintaining a consistent overall design

Thanks to Victor Lesser� R�egis Vincent and Tom

Wagner for their helpful critiques of this paper


References

	
� Ana L�C� Bazzan� Victor Lesser� and Ping Xuan�
Adapting an Organization Design through Domain�
Independent Diagnosis� Computer Science Technical
Report TR����
�� University of Massachusetts at
Amherst� February 
���

	�� T� Biggersta� and C� Richter� Reusability frame�
work� assessment� and directions� In T�J� Biggersta�
and A�J� Perlis� editors� Frontier Series� Software
reusability� Volume I � Concepts and Models� chap�
ter 
� pages 
�
�� ACM Press New York� 
���

	�� Deepika Chauhan and Albert D� Baker� Jafmas�
A multiagent application development system� In
Proceedings of Second International Autonomous
Agents� pages 
���
��� 
���

	�� E�H� Durfee and V�R� Lesser� Partial global planning�
A coordination framework for distributed hypothesis
formation� IEEE Transactions on Systems� Man� and
Cybernetics� �
����

���

�� September 
��
�

	�� Robert Englander� Developing Java Beans� O�Reilly
� Associates� Inc�� 
����

	�� V� Lesser et al� The UMASS intelligent home project�
Submitted to Agents���

	�� T� Finin� R� Fritzson� D� McKay� and R� McEntire�
KQML as an agent communication language� In Pro�
ceedings of the Third International Conference on
Information and Knowledge Management CIKM����
ACM Press� November 
����

	� David Flanagan� JAVA in a Nutshell� O�Reilly �
Associates� Inc�� �nd edition edition� 
����

	�� Prasad Nagendra� K� M�V�� Decker� A� Garvey� and
V� Lesser� Exploring organizational designs with
taems� A case study of distributed data processing�
In Second International Conference on Multi�Agent
Systems� pages ������� 
����

	
�� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy�
and W� Lorensen� Object�Oriented Modelling and
Design� Prentice Hall� Englewood Cli�s� New Jer�
sey� 
��
�

	

� Yoav Shoham� Agent�� A simple agent language and
its interpreter� In Proceedings of the Ninth National
Conference on Arti�cial Intelligence� pages ��������
July 
��
�

	
�� K� Sycara� K� Decker� and M� Williamson� Match�
making and brokering� In Proceedings of the Sec�
ond International Conference on Multi�Agent Sys�
tems 	ICMAS��
�� 
����

	
�� J� van den Elst� F� van Harmelen� and M� Thonnat�
Modelling software components for reuse� In Sev�
enth International Conference on Software Engineer�
ing and Knowledge Engineering� page not yet known�
Knowledge Systems Institute� June 
����

	
�� Regis Vincent� Bryan Horling� TomWagner� and Vic�
tor Lesser� Survivability simulator for multi�agent
adaptive coordination� In International Conference
on Web�Based Modeling and Simulation� San Diego�
CA� 
��� SCS �eds��

	
�� Thomas Wagner� Alan Garvey� and Victor Lesser�
Criteria�Directed Heuristic Task Scheduling� Inter�
national Journal of Approximate Reasoning� Special
Issue on Scheduling� 
���
�

� 
��� A version also
available as UMASS CS TR�������

	
�� Thomas Wagner� Victor Lesser� Brett Benyo� Anita
Raja� Ping Xuan� and Shelly XQ Zhang� Gpgp��
Improvement through divide and conquer� Working
document� 
���

	
�� B�W� Weide� W�F� Ogden� and S�H� Zweben�

Reusable software components� In Advances in com�

puters� vol� � Academic Press� 
��
� ISBN ��
��

�
�
�����


