A Reusable Component Architecture for Agent Construction *
Bryan Horling Victor Lesser

UMass Computer Science Technical Report 98-30
May, 1998

Abstract

A generic, component based architecture is proposed as a basis for designing the agents used
within Multi-Agent Systems. The architecture, based on Sun’s Java Beans, is explored, and
both domain independent and applied component examples are described in detail. Designs
for theoretical new components for the applied agent are also proposed and examined.

1 Overview

Component based architectures are a relatively new introduction to software development. They
attempt to effectively encapsulate the functionality of an object while respecting interface conven-
tions, the goal being to easily combine groups of components to create stand alone applications.
This type of design promotes software reusability - the ability to painlessly transport source code
from one project to another - which is a long sought after but infrequently achieved goal of software
engineering. In this paper I will describe such a component architecture designed for use in the
domain of agent construction.

Much of the research which goes into Multi-Agent Systems deals with their behavior and orga-
nization, often viewing the implementation of these concepts as secondary. While the intellectual
contributions of such research are clearly the more important facet, I believe this practice has sev-
eral weaknesses, both with problems stemming from ad hoc agent construction, and in the act of
construction itself.

A recently emerging and exciting trend in the field of computing has been the combination
and synthesis of existing technologies to solve difficult problems [7, 11]. On paper, this may not
appear to be particularly hard, but in practice it may result in months of reimplementation because
of incompatibilities between existing systems. If the original agent systems, and their respective
technologies, had been originally developed using a clean modular style, this problem could have
been avoided. Such a programming style is also beneficial to everyday architectures, as it both

*This material is based upon work supported by the National Science Foundation under Grant No. TRI-9523419.
Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

improves maintainability and facilitates changes. Too often, though, final systems are built using
prototype code which has outlived its original purpose.

There exists a common pool of functionality that many agents possess, such as the ability to
communicate across a network, locally store and access information, and initialize their local state.
Though individually trivial, the sum of these functions can represent a sizable body of work which is
usually rewritten every time an agent is created. Among subgroups of agents, even more functional
overlap may arise because of their common use of an operating environment and data representation
and manipulation. Rather than regenerating this support code, it seems clear that some mechanism
of reusing old code would be very useful, if it could be made appropriately domain independent.

Code reuse and modularity are not new ideas in the field of computer science [1]. The mechanism
which I have implemented, though, is a level of granularity above this. Instead of working with
simple objects, agents using my framework are built up from reusable components. A component is
differentiated from an object in that they are typically more robust and self-contained, and adhere to
particular naming and behavior conventions to facilitate interoperability. Component technology is
particularly applicable to experimental multi-agent systems because changes between agent variants
can usually be isolated to certain functional areas; replaceable modular components can therefore
provide an almost plug-and-play form of testbed.

The framework which I have developed is written in Java [6], and builds upon Sun’s Java
Beans specification [4, 5, 3] by strengthening inter-component relationships and adding more control
mechanisms. The Java Beans architecture was chosen as a starting point because of its clean yet
powerful organization and integration mechanisms. Agent development and code reuse will also be
facilitated by the availability of visual building tools originally developed for Java Bean compatible
components.

The following sections should give a thorough overview of why the framework was created and
how it can be used. I will start out by describing the motivation for this project. The architecture
section describes how the framework is designed and operates. Following this, each of the com-
ponents in an existing agent will be discussed in detail, and hypothetical new components will be
described. Future improvements and additions will be covered in the conclusion.

2 Motivation

The motivation for the agent framework began with the creation of the Multi-Agent Survivability
Simulator (Mass) [9]. Mass is a flexible execution environment which we designed to simulate the
possible faulty or hostile conditions under which an agent might function. By accurately simulating
these conditions, we can then create and test effective algorithms to deal with adverse situations,
the end result of which is to make our multi-agent systems more robust.

The simulator consists of a centralized controller object, to which a number of possibly remote
agents connect. The controller is then responsible for simulating or providing those aspects of the
environment which the agent must interact with. These controlled aspects include such things as
method execution, agent knowledge, message transfer and environmental constraints. Therefore,
some aspects of the agent, such as communication and execution, must necessarily know of the
existence of the simulator. Other parts, such as problem detection and diagnosis, will be “live” and
unaware of the simulator, to more accurately test their behavior.

I developed an initial ad hoc agent to satisfy these conditions. It worked as expected within

the Mass environment, but it became clear that the design was not generic enough to support the
different kinds of agents which we planned to develop. The monolithic design of the initial agent did
not promote simple modification, and significant extensions to any one agent would quickly make
the internal architecture incompatible with other available agents. Since it was our hope to be able
to make functional changes, such as using new coordination or diagnosis strategies, en mass to the
agents running in the system, it was decided that the initial agent design would not be sufficient.
Our efforts creating the simulation environment and initial agent design are documented in the
appendix Survivability Simulator for Multi-Agent Adaptive Coordination.

Thus, a new design was needed for the agents working within the Mass environment. It needed
to be flexible and extensible, and yet maintain separation between mutually dependent functional
areas to the extent that one could be replaced without modifying the other. It also needed to be
easily customizable, allowing a wide range of agent functionality to be implemented with simple
confined alterations. The component based architecture described in the following sections was
created to satisfy these requirements.

3 Architecture

The agent framework is based on Java Beans, Sun Microsystem’s component model architecture.
For purposes of clarity, when discussing aspects of the agent framework derived directly from Sun’s
architecture, components will be referred to as beans. The Java Beans framework consists of a set
of classes and an API specification for the beans themselves. The classes in the java.beans hierarchy
exist primarily as support for bean functionality, providing bean description interfaces, basic event
classes and other utilities. For the most part, usage of these classes is not necessary within the
agent framework, although more visually advanced components may use them.

3.1 Java Beans API

Event Event

a) | Event Source = Event Listener

\ 4

Component

Event

b) | Event Source

Event Listener Interface | Component

\4

Figure 1: Event propagation model for (a) “dynamic” links created with beanbox and (b) “static”
links specified in the component source code.

More germane to the agent framework is the Java Bean API, which provide behavior and naming
specifications that beans must adhere to. Essentially, the APT is a set of naming conventions which
allow both application construction tools and other beans to easily manipulate the bean’s state and
make use of its functionality.

Most beans will have a set of paired state accessor functions, which are used to both retrieve
and modify data within the bean. For each publicly modifiable variable, there should exist a pair

of functions, one for setting the contents of the variable and another to retrieve it. The API
specifies that these functions should be named setVariable Name and get Variable Name, respectively,
where VariableName should be replaced with some concise description of the targeted variable (e.g.
set/getRemoteHostName). Adherence to this convention not only enforces encapsulation, but also
allows automated tools to easily recognize the configurable parts of a given bean. Application
construction tools can then use this knowledge to provide intuitive graphical interfaces to simple
data types without the need for explicit supporting code.

Another important feature of the Java Beans architecture is its notion of event streams. Each
bean may support one or more event streams, to which other beans may subscribe. The source
bean then generates events at runtime, indicating for instance that an action has taken place or a
state change has occurred, and propagates them to only those other beans which have registered
as being interested in those event types. Such an event generating bean is said to fire events to
a number of other [listener beans. This feature is important because it allows loose connections
to form dynamically between beans. These loose connections in turn facilitate the construction of
functional applications from a number of smaller modules, a key goal in the agent framework. A
harder connection, such as a direct method invocation, would not be as flexible as this arrange-
ment, and would likely require additional code changes when integrating the components. Similar
to the state accessor methods, the event stream interface also makes use of naming and construction
conventions. The source bean must contain two methods for managing its listener set: addFEventLis-
tener and removeFventListener, where EventListener is replaced with the type of event listener (e.g.
add/removeActionEventListener). Each of these methods takes a single listener object as an argu-
ment; the source bean is responsible for managing and making use of the list of listeners. On the
other end of the connection is the listener itself, typically represented by an abstract interface (e.g.
ActionEventListener), which a given bean can implement. Another class specifies the event itself
(e.g. ActionFEvent), which can contain whatever methods or state necessary to convey the meaning
of the event. At runtime, event generation therefore starts with the source producing and firing an
event object to each of its listeners. The firing mechanism itself calls a specific method in each of
the listeners, which can ignore or act upon the event as necessary.

It is important to note that if one is using a bean-aware construction tool, such as Sun’s beanboz,
it is not necessary for beans to directly implement the listener interface for an event type to make
use of a particular event stream. Instead, these tools construct adaptor classes on the fly which
implement the desired interface, and in turn call an arbitrary method within the intended recipient
when an event is received. This design can be seen in Figure 1 (a), with the dashed component
represents the beanbox constructed adaptor. These adaptors are transparent to the user, and are
incorporated into the final Java applet automatically!. Using a graphical tool to make these loose
connections can be quite useful, but during development it can be arduous to have to re-specify all of
these links each time the agent is to be compiled. To overcome this problem, I have added support
within the agent framework to generate code specified, inter-component connections at runtime.
To see how this works, the construction and initialization process of an arbitrary component will
explored in the next section.

LAt this time, agents constructed in the framework using the beanbox tool are generated as applets, a restriction
which will be addressed in a later section.

3.2 Dependency Registration and Checking

To ensure compatibility with the agent framework, components should extend agent.base. Agent-
Component, a base class which provides the standard component interface and utility functions.
When each component is constructed at runtime, the default constructor method located in the
AgentComponent class will also be called, which in turn sets a component descriptor array. The
descriptor array, which defaults to the classname of the component, contains one or more strings in-
dicating the functionality of the component. As an example, a network-aware messaging class could
be described with “Communicate”, whereas a generic logging component could be called “Log”.
Once the descriptor is set, the component registers itself with the State component, a mandatory
object which will be discussed more thoroughly in a later section. This State component then
serves as a utility for creating inter-component connections. A problem solving class can, for in-
stance, use State to obtain a handle to the Communicate component which was registered earlier.
With this handle it can then add itself to Communicate’s event streams (to watch for message
deliveries and arrivals) or use it to invoke any of Communicate’s public methods (e.g. sendMes-
sage). When searching for other components, substring descriptor matches may also be used, which
permits even more flexibility if clever descriptor strings are used. Consider the case where all
of the installed components make use of a logging component whose descriptor is “Log”. State
would normally match this to agent.simplest. Log, but will also match it to agent.simplest. FileLog
or agent.advanced.NetworkLog. This means that even though “static” descriptions of target com-
ponents are specified in the source code, the reference may actually map to a different component,
depending on what is available. If consistent interfaces are used for related components, this allows
the designer to simply replace one module with another to effect a different behavior.

Given that components are now allowed to somewhat statically define a connection to a com-
ponent which may or may not exist at runtime, dependencies can exist in the agent which are not
checked by the compiler. One solution to this problem would be to accept the fact that unresolved
dependencies will throw some sort of exception sooner or later during execution. To handle this
situation in a more elegant manner, I have formally introduced the notion of component dependen-
cies. Each component is expected to announce its dependencies in its constructor method, using
the addDependency method provided in the base AgentComponent class. Once all the components
have been constructed, the Control component, another mandatory object, verifies each of these
dependencies before beginning execution. This ensures that missing dependency targets will be
discovered at program commencement and handled cleanly.

3.3 Initialization and Execution

Two more phases follow the registration and dependency checks: component initialization and
execution. During the initialization phase, the init method of each registered component is called,
in no particular order. The only guarantee made about the system state at this stage is that all
other components have registered successfully. Because of this, initialization typically will consist
of setting up the internal state for each component and forming event stream connections to other
components. Unless explicitly permitted, components should refrain from calling other components’
methods during this phase, as their potentially unstable internal state may lead to race conditions.

During the final execution stage, the begin method is called once for each of the components.
Any continuous or periodic actions should be run here. Examples of this include a communications

module monitoring for incoming messages or connections, or a problem solving module traversing
its search space. Activity spawned within the begin methods provides the driving force for the
entire system, as they not only are a direct source of activity, but also indirectly affect the activity
of other modules through generated events.

3.4 Control

The Control component, one of two “mandatory” components which must be included for a con-
structed agent to function correctly, is responsible for regulating the activity within the agent. As
mentioned above, Control begins its work after the Java applet has constructed each component,
by checking the dependencies which the components (including itself) have registered. If the depen-
dency check succeeds, Control then initializes each component in no particular order, after which
it instructs them to start execution.

The Control module also serves several other functions. The first is to provide a mechanism
for running the agent outside of the normal applet/appletviewer environment. To do this, Control
has a normal main method which, when called, instantiates the Java applet internally without the
use of an external viewing program. This permits the agent to be directly run as an application,
reducing start up time and bypassing security restrictions. Control also serves as a centralized
thread registry. As new threads are created by individual components, they are expected to register
them with the Control component. This registry then provides a way of controlling just the threads
related to agent execution?, which includes suspending, resuming, and killing them. Control also
provides methods for reseting, restarting and quitting the agent.

3.5 State

The second mandatory component is State, which, in addition to the registry of installed com-
ponents, keeps track of the properties the components make use of. State functions as a global
hashtable, to which components can add arbitrary data or retrieve previously stored information.
State is also responsible for firing events when properties are added, changed or removed, which
allows components to base behaviors on certain state changes. Any piece of information which
might be of use to other components should be stored in State’s property table.

The property table also serves as the repository for runtime configuration information, which the
State component gathers during its initialization. Components are able to individually specify what
parameters they are interested in with the static method addParameterinfo, which allows the State
component to remain component-independent. State then uses this list of recognized parameters
to search for keywords either in its HTML context (if applicable) or in the system property list.
Since Java’s System property list incorporates variables set on the command line, this mechanism
provides an easy way to change the runtime behavior of previously compiled components.

3.6 Implementation

The general design described above has been implemented and tested. To date, the entire framework
consists of 32 classes which contain more than 300 methods in 4500 lines of code. The basic building

2T assume that if the users wants to control all the available threads that they can use the normal java.lang. Thread
methods

components of the framework comprise two Java packages: agent.base and agent.simplest. The five
agent.base classes define the intrinsic properties the individual parts of the framework must have,
acting as the base classes to be extended in an actual agent. These classes serve to both enforce
naming conventions and provide default functional content for methods the designer may choose to
not override.

The 16 classes in the agent.simplest package provides all the functionality to make a basic agent.
It includes services for communication, execution, and logging and implements the mandatory state
and control components. The simple components should be viewed as a robust starting point
for an actual agent, providing direction for the designer of a more customized agent. Much of the
functionality required by an agent exists here, making customization easy if the designer adopts this
particular organization. As we will see in the following section, only minor additions were necessary
to these classes to create a basic agent compatible with our Mass simulation environment. Similarly,
it is expected that only minor modifications would be necessary to create a simple independent
agent, using this starting point.

4 An Example Agent

In this section I will explore the construction of a generic agent using the framework described above.
Each component will be described, including a brief synopsis of its characteristics, along with a more
formal description of its behavior and capabilities. Unless otherwise noted, subclasses should be
assumed to inherit all of the traits of their parents. In the synopsis listings, only derivations from
the parent class will be noted?.

The descriptions below include components for both the simple base agent described above and
a generic Mass-compatible agent. The Mass agent represents a simple example of how the general
framework and simplest components can be adapted to specific working conditions. If possible,
it may be illustrative to use the actual Mass agent source code as a reference while reading the
following section.

4.1 Communicate

Name: agent.simplest.Communicate
Extends: agent.base.AgentComponent
Depends: State, Log, Control

Parameters: Host, Port
Fires: MessageEvent
Listens: State:PropertyChangeEvent

The Communicate component is responsible for handling the network message activity within
the agent. When the component is started, it either opens up a connection to a remote host, or
listens on a numbered port. After this, it spawns and registers a new thread, which will monitor the
newly opened connection. As messages arrive, they are decoded and placed in a Message object,
which is in turn stored inside a MessageEvent object suitable for distribution to any listeners which

3In particular, a child who’s Fires description is None will still fire all of the same events as its parent.

might be present. Communicate also supplies a sendMessage method, which other components may
use to send messages.

The PropertyChange event stream is used to watch for changes to the two parameter variables
the component is interested in.

Name: agent.mass.Communicate
Extends: agent.simplest.Communicate
Depends: None

Parameters: None

Fires: None

Listens: None

The Mass Communication component differs because of its support for the simulation environ-
ment. The component has modified the way messages are sent and retrieved, reflecting the fact that
KQML is used to encode interactions with the simulator. Message pre and post-processor methods
were also added to watch for simulation-specific messages who’s content must be handled at certain
times during the clock cycle.

Message receipt was further modified to reflect the fact that activity should only take place
while the agent is being pulsed. To do this, MessageEvent firing for received messages are queued
until a pulse is received, when the queue of MessageEvents is flushed to the other components. In
this sense, only messages received before the pulse is generated are considered to be active during
that time period. Control messages, the non-scenario messages sent by the simulator (e.g. reset,
disconnect), are always fired immediately upon receipt.

4.2 Control

Name: agent.simplest.Control
Extends: agent.base.AgentComponent
Depends: State, Log

Parameters: None

Fires: None

Listens: None

This Control component is identical to the one described in the architecture section.

Name: agent.mass.Control
Extends: agent.simplest.Control
Depends: Communicate

Parameters: None
Fires: None
Listens: Communicate:MessageEvent

The Mass Control component was modified to enable it to listen to Communicate’s Message
event stream. It watches this stream for both reset and disconnect messages arriving from the
centralized controller.

4.3 Execute

Name: agent.simplest.Execute
Extends: agent.base.AgentComponent
Depends: Log

Parameters: None
Fires: ActionEvent
Listens: None

The Execute component is responsible for actually performing the actions associated with the
agent, which could range from direct responses to queries to simply performing tasks laid out
in a global schedule. The simplest Execute component does not do much of anything, as the
specific mechanism for executing tasks is usually domain dependent. Instead, it functions more
as a template, so that component writers will have an idea what to expect in derived Execute
components.

Name: agent.mass.Execute
Extends: agent.simplest.Execute
Depends: Communicate, State
Parameters: Location, Display, RunDisplay
Fires: None
Listens: Communicate:MessageEvent, State:PropertyChangeEvent

The Mass Execute component builds on the simplest template described above by adding the
functionality needed to simulate execution. It uses a PropertyChange event stream from State
to watch for changes in the global TAEMS [2] task structure, which may or may not contain an
execution schedule. If a schedule is found, it selects the first method from the list and sends it to
the simulation controller to be executed. The Execute component then makes use of a Message
event stream from Communicate to watch for the completion of its task, which the controller will
send to the agent at the correct time. Upon receipt of this completion notification, Execute will
read in the method’s execution characteristics and fire an ActionEvent. Because this behavior is
encapsulated within the Execute component, the fact that the methods are simulated is transparent,
which makes the overall design less domain dependent.

As noted in the synopsis, Execute also recognizes three new parameters, which it uses to produce
a visual display of the agent at the simulator. It continues to monitor changes to these variables
using the same PropertyChange event stream mentioned above, notifying the simulator if an update
occurs.

4.4 Log

Name: agent.simplest.Log
Extends: agent.base.AgentComponent
Depends: State

Parameters: LogLevel
Fires: None
Listens: State:PropertyChangeEvent

The Log component is a simple logging class, which provides generic methods to facilitate both
general and event stream logging to the standard error stream. Each string to be logged has
associated with it a level, assigned by the caller. If this level is less than or equal to Log’s internal
log level, the string is recorded, otherwise it is thrown out. Log messages are automatically tagged
with the actual time, execution thread name, agent name and agent time. The latter two are
obtained by watching for changes to the Time and Name properties in the PropertyChange event

stream.

Name:

Extends:

Depends:
Parameters:
Fires:
Listens:

FileLog
destination

agent.simplest.FileLog
agent.simplest.Log
None

None

None

None

is a trivial subclass of Log, with the exception that a file name is specified as the
for the log messages, rather than standard error. Both overwrite and append modes

are supported. Note that a component dependent on “Log” could use either FileLog or its base

component,

Log, without changing a single line of code. This is good example of how substring name

matching and a common interface can be exploited to permit seamless component replacement.

4.5 State

Name:
Extends:
Depends:
Parameters:
Fires:
Listens:

agent.simplest.State
agent.base.AgentComponent
Log

Name

PropertyChangeEvent

None

The State component is identical to that described in the architecture section.

Name:
Extends:
Depends:
Parameters:
Fires:
Listens:

agent.mass.State
agent.simplest.State
Communicate

Name

None
Communicate:MessageEvent

The Mass State component adds support for remote property queries and changes by monitoring
Communicate’s Message event stream. It also allows the system designer to specify an arbitrary
number of constraints, represented with a supplied Constraint class, both within a configuration
file or as supplied remotely by the simulation controller.

10

4.6 Problem Solver

Name: agent.mass.ProblemSolver
Extends: agent.base.AgentComponent
Depends: Log, State, Communicate, Execute
Parameters: Name
Fires: PropertyChangeEvent
Listens: Communicate:MessageEvent, Execute:ActionEvent

In a typical agent, the problem solver will act as an instigator to other components. It may be
responsible for discovering and evaluating problems or goals, and determining how best they can be
solved or achieved. Within the Mass architecture, though, the problem solving component has been
replaced with a more domain independent mechanism relying on pre-formed task structures rather
than complex behavioral algorithms. The job of creating task structures for individual agents has
been delegated to a task generator, housed within the centralized simulation controller. When a
simulation scenario begins, this generator is responsible for distributing the task structures, which
the agents then make use of as if they were created locally.

The Mass problem solving component, then, is responsible for receiving this task structure from
the generator. Once the structure has been obtained, it is run through a design-to-criteria scheduling
utility [10], which attempts to produce a schedule satisfying the agent’s execution criteria. The
schedule is then incorporated into the task structure by the problem solver, and placed in State’s
property table.

It should be noted that with the simple replacement of this component, the agent could exhibit
very different behavior, yet still function correctly within the Mass environment. By separating
the actual communication and execution processes, a substantial problem solver with interesting
behavior could replace this component without the need to modify other parts of the agent.

4.7 Integration

ProblemSolver _ —»logData
Execute Log

O A

|~

— Static Link
----- » Dynamic Link
— — External Stream

Control o State
» Communicate

~ ~ ~External Sate

Network Data <« — —

Figure 2: Event stream diagram for the Mass agent

Now that each of the individual components have been examined, it may be useful to see how they
are combined and work in conjunction with one another. Using Sun’s beanboz tool, six components

11

are first joined together in the applet that acts as a shell holding them together: agent.mass.Control,
agent.mass.Communicate, agent.mass.Execute, agent.simplest.Log, agent.mass.State, and agent.-
mass.ProblemSolver. Since much of their connectivity is represented statically within their source
code, very few stream connections need to be added to the group. In particular, only Message-
Event.messageReceived, MessageEvent.messageSent and PropertyEvent.propertyAdded are sent to
Log’s generic event logging function. Beanbox’s property setting interface is also used to set Commu-
nicate’s host id and port number and Log’s logging level. Once completed, beanbox automatically
generates and compiles the support and applet code, and then stores the necessary classes within
several JAR (Java ARchive) files. The final structural design can be see in Figure 2; static links
refer to source code references, dynamic links are those specified within beanbox.

Additional configuration elements, such as the agent’s name, location, etc, are placed in a
configuration file. A utility was then used to generate the necessary command and command line
parameters to correctly instantiate the agent. Execution begins with the main method within
agent.mass.Control. This function creates the applet context necessary to run the applet class
produced by the beanbox tool. After the applet class re-instantiates each of the components, the
Control performs system dependency verification. It then initializes each component, during which
the bulk of the event stream connections are created. State also gathers the runtime parameters at
this time, firing a PropertyEvent for each added variable. After initialization, Control starts each
component. All of the components, with the exception of Communicate, are essentially idle at this
time. Communicate begins by opening a connection to the simulator, followed by the expected
registration handshake which lets the simulator know a compliant agent is connecting.

After the connection is established, the simulator establishes and assigns a unique name to the
agent by sending messages the State component can receive and act upon because of its incoming
MessageEvent stream. The scenario continues with the simulator sending a time pulse to the agent.
Communicate recognizes the pulse message in its preprocessor, and increments the agent’s local
Clock property. Since no other incoming messages have been queued, Communicate immediately
acknowledges the pulse with a message back to the simulator, ending the time segment. The
simulator also send notification of the availability of a new TAMS task structure, a control message
which gets fired immediately. ProblemSolver sees the new task structure message and fetches the
data from the simulator. After creating a schedule using the task structure, ProblemSolver stores
the entire structure in State’s table, which causes a PropertyEvent to fire. Execute notices this
event, and would halt its currently executing action if it had one.

At the beginning of the second time segment, the simulator sends another pulse message. The
Communicator again increments the local clock and fires the pulse event to the other local com-
ponents. Because a schedule has now been created, Execute responds to this pulse message by
fetching the first scheduled task and shipping it off to the simulator. The time segment then ends
with Communicate acknowledging the pulse. Several more pulses go by uneventfully, because the
agent is waiting for its action to complete. Eventually, the simulator sends back the execution
results, which the Execute component retrieves and interprets. It then fires these results to the
other components and begins a new task. This process continues until the scenario completes.

This relatively simple example should demonstrate how the behavior of the framework is some-
what different than traditional programming. The event driven mechanism which is used provides
the power necessary to exhibit useful behaviors while maintaining clean modular separation.

12

5 Hypothetical Components

Following up on the examples described in the previous section, I will now give examples of how
other hypothetical components could be added to this particular agent. I will concentrate on both
the benefits and drawbacks of the framework in these examples, and will leave domain issues to
the reader’s imagination. The first example is the relatively non-intrusive addition of a learning
component. Following this, I will go over how true method execution could be intermingled within
a simulated environment.

5.1 Learning

The learning component to be added to the agent will make use of statistical information to help
refine the agent’s internal model of its behavior, in an attempt to make its decision making process
more accurate. To do this, the component will monitor the actions the agent performs, watching
such things as quality, cost and duration, and compare them to the expected performance of those
actions. It will then use this information to update the model the agent uses when deciding which
goals to attempt and how it attempts to achieve them.

To monitor the agent’s activity, the learning component first links to the Execute component’s
ActionEvent stream. Any time an action is completed or aborted, the pertinent information related
to that activity will be send over this stream. Using whatever statistical techniques are applicable,
the component can use this information to build its own internal view of the characteristics and
trends the agent’s activities are exhibiting. The component can then retrieve the TAMS task
structure stored in the state table, and compare the expected values to those it observed. If changes
are necessary, it will make them, and then store the structure back in the state table.

Only minor modifications to two other components are needed to integrate the new learning
component. First, the ProblemSolver needs to watch for changes in the TAMS task structure.
If changes do occur, it needs to verify that it is performing the correct activities, or create a new
schedule if this is not true. Second, the Execute component should be modified to be more tolerant of
changes to the global task structure. Specifically, it should only cancel and restart action execution
if the currently available schedule is changed, rather than when the any part of the task structure
changes, as is currently the case.

5.2 Heterogeneous Execution

While it is useful to have a mechanism for simply simulating the execution of a particular task, it
is sometimes necessary for an agent to have the actual results one would normally obtain from the
action. At the same time, it is still necessary for these actions to be monitored and modified by the
simulation controller for the environment to act coherently.

One additional component, able to perform some subset of the available methods, is needed
to add this functionality. This component should be able to examine the action characteristics
returned by the simulator and produce results matching those characteristics. For instance, if the
simulator reports that the results have no quality, the new execution component should recognize
this and produce some sort of invalid result. Once this component is designed, it can be placed
in-line with the original Execute component, along with some stream redirections, to produce the
desired effect.

13

Using this design, the existing Execute component would still monitor the schedule and send
simulated method execution requests to the simulator. Upon receipt of the completion message,
though, it would no longer fire an ActionEvent to the original components. Instead, only the new
execution component would receive these messages. It would then examine the event and determine
if actual results are needed or not. After creating and integrating these results, it would then fire
an updated ActionEvent to those components which would normally monitor the stream arising
from the Execute component.

This is a fairly simple change to make, but there are some underlying implementation problems
which need to be handled. The first is that the static references to the Execute component must be
changed in some way. It is true that the new component could be named “RealExecute” or some
other phrase that would substring match Execute, but the fact that the original Execute component
will still exist in the framework will cause a race condition within the registration process. The
names are unordered within the component registry, so requests for “Execute” would not necessarily
produce the desired results. There are three viable solutions to the problem: change the original
references to explicitly request “RealExecute”, generate the links by hand within the beanbox tool,
or have a single subclass of Execute rather than have two related instances.

6 Present and Future Directions

The generic Mass agent described in the Example Agent section has been successfully implemented
and used with the Mass environment. Four identical agents were used to simulate an example of
the multi-agent organization described by the Warren financial portfolio management system [8].
In our simulation, the initial behavior of each agent was governed by the subjective TAMS task
structures seeded to each agent (see section 5.6), which was used by the Design-to-Criteria scheduler
to produce a sequence of actions aimed at satisfying a particular goal. Initial survivability scenarios
have also been tested, by simulating execution failures which prompt behavioral responses by the
agents.

In addition, the agent framework and Mass simulator are also being used in a more complicated
environment as part of a group class project. The goal of this project is to develop an intelligent
home simulation environment, where agents coordinate over resources and activities in an effort
to satisfy both local goals and global constraints. The Mass simulator and TAMS representation
have been updated to support resource models, and the user and agent interfaces improved. Minor
additions were made to the agent framework to support the new capabilities of the simulator and
facilitate agent construction. A wide range of agents are currently being modeled with the framework
as part of this project, including a water heater, dishwasher, air conditioner and coffee pot, to name
a few. In each case, the designer only needed to modify the problem solving component of the
framework to produce the different behaviors needed by these agents, validating in some sense my
prior ease of customization claim. At this time, several agents have been successfully implemented,
using new activity scheduling techniques and true agent-to-agent coordination. A new statistics
gathering component, reminiscent of the learning module described in section 5.1, has also been
designed and seamlessly added to each agent without modification to existing components.

In the coming months, I expect the development of the framework to continue with the design of
survivability detection and diagnosis components. One or more coordination components (based on
GPGP or using more ad hoc techniques) are also planned for development. Modular designs in this

14

case will theoretically permit us to easily use one or another of these components interchangeably,
facilitating the construction and testing process.

7 Conclusion

Component design is an interesting and useful software engineering technique which can greatly
facilitate RAD (rapid application development) and code reusability. It is my belief that it is par-
ticularly applicable to agent design, because of the functional redundancy which exists in many
systems. It can also improve compatibility between existing technologies because of interface con-
ventions, which can assist in the integration process. The end results are programs which have
cleaner designs, are better understood and more robust.

The architecture presented in this paper was designed with these goals in mind, and doubtless
will continue to evolve as new situations arise. Future work on this project will attempt to provide
more control over the event delivery process, including ordering constraints and dynamic response
to the event source. Human interface construction may also be formalized or facilitated. It is hoped
that as the base of finished components grows, more sophisticated systems can be designed and
tested, as reusable components permit the simple construction of heterogeneous but compatible
agents.

References

[1] Frank M. Carrano. Data Abstraction and Problem Solving with C++. The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, CA, 1995.

[2] Keith S. Decker. Task environment centered simulation. In M. Prietula, K. Carley, and

L. Gasser, editors, Simulating Organizations: Computational Models of Institutions and
Groups. AAAT Press/MIT Press, 1996. Forthcoming.

[3] Alden DeSoto. Using the beans development kit 1.0. http://www.javasoft.com, 1997.

[4] Graham Hamilton (Editor). Sun microsystems java beans api specification.
http://java.sun.com/beans, 1997.

[5] Robert Englander. Developing Java Beans. O'Reilly & Associates, Inc., 1997.
6] David Flanagan. JAVA in a Nutshell. O'Reilly & Associates, Inc., 2nd edition edition, 1997.

[7] Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and Shelley XQ.
Zhang. BIG: A resource-bounded information gathering agent. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98), July 1998. To appear. See also
UMass CS Technical Reports 98-03 and 97-34.

18] K. Sycara, K. Decker, and M. Williamson. Matchmaking and brokering. In Proceedings of the
Second International Conference on Multi-Agent Systems (ICMAS-96), 1996.

15

9] Regis Vincent, Bryan Horling, Tom Wagner, and Victor Lesser. Survivability simulator for
multi-agent adaptive coordination. In International Conference on Web-Based Modeling and
Simulation, San Diego, CA, 1998. SCS (eds).

[10] Thomas Wagner, Alan Garvey, and Victor Lesser. Criteria-Directed Heuristic Task Scheduling.
International Journal of Approzimate Reasoning, Special Issue on Scheduling, 1998. To appear.
Also available as UMASS CS TR-97-59.

[11] Tom Wagner. Matchmaking: Jil meets tszems. Version June, 13 1997.

16

