
A Reusable Component Architecture for Agent Construction �

Bryan Horling Victor Lesser

UMass Computer Science Technical Report �����

May� ����

Abstract

A generic� component based architecture is proposed as a basis for designing the agents used

within Multi�Agent Systems� The architecture� based on Sun�s Java Beans� is explored� and

both domain independent and applied component examples are described in detail� Designs

for theoretical new components for the applied agent are also proposed and examined�

� Overview

Component based architectures are a relatively new introduction to software development� They
attempt to e�ectively encapsulate the functionality of an object while respecting interface conven�
tions� the goal being to easily combine groups of components to create stand alone applications�
This type of design promotes software reusability � the ability to painlessly transport source code
from one project to another � which is a long sought after but infrequently achieved goal of software
engineering� In this paper I will describe such a component architecture designed for use in the
domain of agent construction�

Much of the research which goes into Multi�Agent Systems deals with their behavior and orga�
nization� often viewing the implementation of these concepts as secondary� While the intellectual
contributions of such research are clearly the more important facet� I believe this practice has sev�
eral weaknesses� both with problems stemming from ad hoc agent construction� and in the act of
construction itself�

A recently emerging and exciting trend in the �eld of computing has been the combination
and synthesis of existing technologies to solve di�cult problems �	� 

�� On paper� this may not
appear to be particularly hard� but in practice it may result in months of reimplementation because
of incompatibilities between existing systems� If the original agent systems� and their respective
technologies� had been originally developed using a clean modular style� this problem could have
been avoided� Such a programming style is also bene�cial to everyday architectures� as it both

�This material is based upon work supported by the National Science Foundation under Grant No� IRI������	��
Disclaimer
 Any opinions� �ndings� and conclusions or recommendations expressed in this material are those of the
author
s� and do not necessarily re�ect the views of the National Science Foundation�






improves maintainability and facilitates changes� Too often� though� �nal systems are built using
prototype code which has outlived its original purpose�

There exists a common pool of functionality that many agents possess� such as the ability to
communicate across a network� locally store and access information� and initialize their local state�
Though individually trivial� the sum of these functions can represent a sizable body of work which is
usually rewritten every time an agent is created� Among subgroups of agents� even more functional
overlap may arise because of their common use of an operating environment and data representation
and manipulation� Rather than regenerating this support code� it seems clear that some mechanism
of reusing old code would be very useful� if it could be made appropriately domain independent�

Code reuse and modularity are not new ideas in the �eld of computer science �
�� The mechanism
which I have implemented� though� is a level of granularity above this� Instead of working with
simple objects� agents using my framework are built up from reusable components� A component is
di�erentiated from an object in that they are typically more robust and self�contained� and adhere to
particular naming and behavior conventions to facilitate interoperability� Component technology is
particularly applicable to experimental multi�agent systems because changes between agent variants
can usually be isolated to certain functional areas� replaceable modular components can therefore
provide an almost plug�and�play form of testbed�

The framework which I have developed is written in Java �
�� and builds upon Sun�s Java
Beans speci�cation ��� �� �� by strengthening inter�component relationships and adding more control
mechanisms� The Java Beans architecture was chosen as a starting point because of its clean yet
powerful organization and integration mechanisms� Agent development and code reuse will also be
facilitated by the availability of visual building tools originally developed for Java Bean compatible
components�

The following sections should give a thorough overview of why the framework was created and
how it can be used� I will start out by describing the motivation for this project� The architecture
section describes how the framework is designed and operates� Following this� each of the com�
ponents in an existing agent will be discussed in detail� and hypothetical new components will be
described� Future improvements and additions will be covered in the conclusion�

� Motivation

The motivation for the agent framework began with the creation of the Multi�Agent Survivability
Simulator �Mass� ���� Mass is a �exible execution environment which we designed to simulate the
possible faulty or hostile conditions under which an agent might function� By accurately simulating
these conditions� we can then create and test e�ective algorithms to deal with adverse situations�
the end result of which is to make our multi�agent systems more robust�

The simulator consists of a centralized controller object� to which a number of possibly remote
agents connect� The controller is then responsible for simulating or providing those aspects of the
environment which the agent must interact with� These controlled aspects include such things as
method execution� agent knowledge� message transfer and environmental constraints� Therefore�
some aspects of the agent� such as communication and execution� must necessarily know of the
existence of the simulator� Other parts� such as problem detection and diagnosis� will be �live� and
unaware of the simulator� to more accurately test their behavior�

I developed an initial ad hoc agent to satisfy these conditions� It worked as expected within

�



the Mass environment� but it became clear that the design was not generic enough to support the
di�erent kinds of agents which we planned to develop� The monolithic design of the initial agent did
not promote simple modi�cation� and signi�cant extensions to any one agent would quickly make
the internal architecture incompatible with other available agents� Since it was our hope to be able
to make functional changes� such as using new coordination or diagnosis strategies� en mass to the
agents running in the system� it was decided that the initial agent design would not be su�cient�
Our e�orts creating the simulation environment and initial agent design are documented in the
appendix Survivability Simulator for Multi�Agent Adaptive Coordination�

Thus� a new design was needed for the agents working within the Mass environment� It needed
to be �exible and extensible� and yet maintain separation between mutually dependent functional
areas to the extent that one could be replaced without modifying the other� It also needed to be
easily customizable� allowing a wide range of agent functionality to be implemented with simple
con�ned alterations� The component based architecture described in the following sections was
created to satisfy these requirements�

� Architecture

The agent framework is based on Java Beans� Sun Microsystem�s component model architecture�
For purposes of clarity� when discussing aspects of the agent framework derived directly from Sun�s
architecture� components will be referred to as beans� The Java Beans framework consists of a set
of classes and an API speci�cation for the beans themselves� The classes in the java�beans hierarchy
exist primarily as support for bean functionality� providing bean description interfaces� basic event
classes and other utilities� For the most part� usage of these classes is not necessary within the
agent framework� although more visually advanced components may use them�

��� Java Beans API

Event Source ComponentEvent Listener
Event Event

Event Source ComponentEvent Listener Interface
Event

a)

b)

Figure 
� Event propagation model for �a� �dynamic� links created with beanbox and �b� �static�
links speci�ed in the component source code�

More germane to the agent framework is the Java Bean API� which provide behavior and naming
speci�cations that beans must adhere to� Essentially� the API is a set of naming conventions which
allow both application construction tools and other beans to easily manipulate the bean�s state and
make use of its functionality�

Most beans will have a set of paired state accessor functions� which are used to both retrieve
and modify data within the bean� For each publicly modi�able variable� there should exist a pair

�



of functions� one for setting the contents of the variable and another to retrieve it� The API
speci�es that these functions should be named setVariableName and getVariableName� respectively�
where VariableName should be replaced with some concise description of the targeted variable �e�g�
set�getRemoteHostName�� Adherence to this convention not only enforces encapsulation� but also
allows automated tools to easily recognize the con�gurable parts of a given bean� Application
construction tools can then use this knowledge to provide intuitive graphical interfaces to simple
data types without the need for explicit supporting code�

Another important feature of the Java Beans architecture is its notion of event streams� Each
bean may support one or more event streams� to which other beans may subscribe� The source
bean then generates events at runtime� indicating for instance that an action has taken place or a
state change has occurred� and propagates them to only those other beans which have registered
as being interested in those event types� Such an event generating bean is said to �re events to
a number of other listener beans� This feature is important because it allows loose connections
to form dynamically between beans� These loose connections in turn facilitate the construction of
functional applications from a number of smaller modules� a key goal in the agent framework� A
harder connection� such as a direct method invocation� would not be as �exible as this arrange�
ment� and would likely require additional code changes when integrating the components� Similar
to the state accessor methods� the event stream interface also makes use of naming and construction
conventions� The source bean must contain two methods for managing its listener set� addEventLis�
tener and removeEventListener� where EventListener is replaced with the type of event listener �e�g�
add�removeActionEventListener�� Each of these methods takes a single listener object as an argu�
ment� the source bean is responsible for managing and making use of the list of listeners� On the
other end of the connection is the listener itself� typically represented by an abstract interface �e�g�
ActionEventListener�� which a given bean can implement� Another class speci�es the event itself
�e�g� ActionEvent�� which can contain whatever methods or state necessary to convey the meaning
of the event� At runtime� event generation therefore starts with the source producing and �ring an
event object to each of its listeners� The �ring mechanism itself calls a speci�c method in each of
the listeners� which can ignore or act upon the event as necessary�

It is important to note that if one is using a bean�aware construction tool� such as Sun�s beanbox�
it is not necessary for beans to directly implement the listener interface for an event type to make
use of a particular event stream� Instead� these tools construct adaptor classes on the �y which
implement the desired interface� and in turn call an arbitrary method within the intended recipient
when an event is received� This design can be seen in Figure 
 �a�� with the dashed component
represents the beanbox constructed adaptor� These adaptors are transparent to the user� and are
incorporated into the �nal Java applet automatically�� Using a graphical tool to make these loose
connections can be quite useful� but during development it can be arduous to have to re�specify all of
these links each time the agent is to be compiled� To overcome this problem� I have added support
within the agent framework to generate code speci�ed� inter�component connections at runtime�
To see how this works� the construction and initialization process of an arbitrary component will
explored in the next section�

�At this time� agents constructed in the framework using the beanbox tool are generated as applets� a restriction
which will be addressed in a later section�

�



��� Dependency Registration and Checking

To ensure compatibility with the agent framework� components should extend agent�base�Agent�
Component� a base class which provides the standard component interface and utility functions�
When each component is constructed at runtime� the default constructor method located in the
AgentComponent class will also be called� which in turn sets a component descriptor array� The
descriptor array� which defaults to the classname of the component� contains one or more strings in�
dicating the functionality of the component� As an example� a network�aware messaging class could
be described with �Communicate�� whereas a generic logging component could be called �Log��
Once the descriptor is set� the component registers itself with the State component� a mandatory
object which will be discussed more thoroughly in a later section� This State component then
serves as a utility for creating inter�component connections� A problem solving class can� for in�
stance� use State to obtain a handle to the Communicate component which was registered earlier�
With this handle it can then add itself to Communicate�s event streams �to watch for message
deliveries and arrivals� or use it to invoke any of Communicate�s public methods �e�g� sendMes�
sage�� When searching for other components� substring descriptor matches may also be used� which
permits even more �exibility if clever descriptor strings are used� Consider the case where all
of the installed components make use of a logging component whose descriptor is �Log�� State
would normally match this to agent�simplest�Log� but will also match it to agent�simplest�FileLog
or agent�advanced�NetworkLog� This means that even though �static� descriptions of target com�
ponents are speci�ed in the source code� the reference may actually map to a di�erent component�
depending on what is available� If consistent interfaces are used for related components� this allows
the designer to simply replace one module with another to e�ect a di�erent behavior�

Given that components are now allowed to somewhat statically de�ne a connection to a com�
ponent which may or may not exist at runtime� dependencies can exist in the agent which are not
checked by the compiler� One solution to this problem would be to accept the fact that unresolved
dependencies will throw some sort of exception sooner or later during execution� To handle this
situation in a more elegant manner� I have formally introduced the notion of component dependen�
cies� Each component is expected to announce its dependencies in its constructor method� using
the addDependency method provided in the base AgentComponent class� Once all the components
have been constructed� the Control component� another mandatory object� veri�es each of these
dependencies before beginning execution� This ensures that missing dependency targets will be
discovered at program commencement and handled cleanly�

��� Initialization and Execution

Two more phases follow the registration and dependency checks� component initialization and
execution� During the initialization phase� the init method of each registered component is called�
in no particular order� The only guarantee made about the system state at this stage is that all
other components have registered successfully� Because of this� initialization typically will consist
of setting up the internal state for each component and forming event stream connections to other
components� Unless explicitly permitted� components should refrain from calling other components�
methods during this phase� as their potentially unstable internal state may lead to race conditions�

During the �nal execution stage� the begin method is called once for each of the components�
Any continuous or periodic actions should be run here� Examples of this include a communications

�



module monitoring for incoming messages or connections� or a problem solving module traversing
its search space� Activity spawned within the begin methods provides the driving force for the
entire system� as they not only are a direct source of activity� but also indirectly a�ect the activity
of other modules through generated events�

��� Control

The Control component� one of two �mandatory� components which must be included for a con�
structed agent to function correctly� is responsible for regulating the activity within the agent� As
mentioned above� Control begins its work after the Java applet has constructed each component�
by checking the dependencies which the components �including itself� have registered� If the depen�
dency check succeeds� Control then initializes each component in no particular order� after which
it instructs them to start execution�

The Control module also serves several other functions� The �rst is to provide a mechanism
for running the agent outside of the normal applet�appletviewer environment� To do this� Control
has a normal main method which� when called� instantiates the Java applet internally without the
use of an external viewing program� This permits the agent to be directly run as an application�
reducing start up time and bypassing security restrictions� Control also serves as a centralized
thread registry� As new threads are created by individual components� they are expected to register
them with the Control component� This registry then provides a way of controlling just the threads
related to agent execution�� which includes suspending� resuming� and killing them� Control also
provides methods for reseting� restarting and quitting the agent�

��� State

The second mandatory component is State� which� in addition to the registry of installed com�
ponents� keeps track of the properties the components make use of� State functions as a global
hashtable� to which components can add arbitrary data or retrieve previously stored information�
State is also responsible for �ring events when properties are added� changed or removed� which
allows components to base behaviors on certain state changes� Any piece of information which
might be of use to other components should be stored in State�s property table�

The property table also serves as the repository for runtime con�guration information� which the
State component gathers during its initialization� Components are able to individually specify what
parameters they are interested in with the static method addParameterInfo� which allows the State
component to remain component�independent� State then uses this list of recognized parameters
to search for keywords either in its HTML context �if applicable� or in the system property list�
Since Java�s System property list incorporates variables set on the command line� this mechanism
provides an easy way to change the runtime behavior of previously compiled components�

��� Implementation

The general design described above has been implemented and tested� To date� the entire framework
consists of �� classes which contain more than ��� methods in ���� lines of code� The basic building

�I assume that if the users wants to control all the available threads that they can use the normal java�lang�Thread

methods






components of the framework comprise two Java packages� agent�base and agent�simplest� The �ve
agent�base classes de�ne the intrinsic properties the individual parts of the framework must have�
acting as the base classes to be extended in an actual agent� These classes serve to both enforce
naming conventions and provide default functional content for methods the designer may choose to
not override�

The 

 classes in the agent�simplest package provides all the functionality to make a basic agent�
It includes services for communication� execution� and logging and implements the mandatory state
and control components� The simple components should be viewed as a robust starting point
for an actual agent� providing direction for the designer of a more customized agent� Much of the
functionality required by an agent exists here� making customization easy if the designer adopts this
particular organization� As we will see in the following section� only minor additions were necessary
to these classes to create a basic agent compatible with our Mass simulation environment� Similarly�
it is expected that only minor modi�cations would be necessary to create a simple independent
agent� using this starting point�

� An Example Agent

In this section I will explore the construction of a generic agent using the framework described above�
Each component will be described� including a brief synopsis of its characteristics� along with a more
formal description of its behavior and capabilities� Unless otherwise noted� subclasses should be
assumed to inherit all of the traits of their parents� In the synopsis listings� only derivations from
the parent class will be noted��

The descriptions below include components for both the simple base agent described above and
a generic Mass�compatible agent� The Mass agent represents a simple example of how the general
framework and simplest components can be adapted to speci�c working conditions� If possible�
it may be illustrative to use the actual Mass agent source code as a reference while reading the
following section�

��� Communicate

Name� agent�simplest�Communicate
Extends� agent�base�AgentComponent
Depends� State� Log� Control

Parameters� Host� Port
Fires� MessageEvent

Listens� State�PropertyChangeEvent

The Communicate component is responsible for handling the network message activity within
the agent� When the component is started� it either opens up a connection to a remote host� or
listens on a numbered port� After this� it spawns and registers a new thread� which will monitor the
newly opened connection� As messages arrive� they are decoded and placed in a Message object�
which is in turn stored inside a MessageEvent object suitable for distribution to any listeners which

�In particular� a child who�s Fires description is None will still �re all of the same events as its parent�

	



might be present� Communicate also supplies a sendMessage method� which other components may
use to send messages�

The PropertyChange event stream is used to watch for changes to the two parameter variables
the component is interested in�

Name� agent�mass�Communicate
Extends� agent�simplest�Communicate
Depends� None

Parameters� None
Fires� None

Listens� None

The Mass Communication component di�ers because of its support for the simulation environ�
ment� The component has modi�ed the way messages are sent and retrieved� re�ecting the fact that
KQML is used to encode interactions with the simulator� Message pre and post�processor methods
were also added to watch for simulation�speci�c messages who�s content must be handled at certain
times during the clock cycle�

Message receipt was further modi�ed to re�ect the fact that activity should only take place
while the agent is being pulsed� To do this� MessageEvent �ring for received messages are queued
until a pulse is received� when the queue of MessageEvents is �ushed to the other components� In
this sense� only messages received before the pulse is generated are considered to be active during
that time period� Control messages� the non�scenario messages sent by the simulator �e�g� reset�
disconnect�� are always �red immediately upon receipt�

��� Control

Name� agent�simplest�Control
Extends� agent�base�AgentComponent
Depends� State� Log

Parameters� None
Fires� None

Listens� None

This Control component is identical to the one described in the architecture section�

Name� agent�mass�Control
Extends� agent�simplest�Control
Depends� Communicate

Parameters� None
Fires� None

Listens� Communicate�MessageEvent

The Mass Control component was modi�ed to enable it to listen to Communicate�s Message
event stream� It watches this stream for both reset and disconnect messages arriving from the
centralized controller�

�



��� Execute

Name� agent�simplest�Execute
Extends� agent�base�AgentComponent
Depends� Log

Parameters� None
Fires� ActionEvent

Listens� None

The Execute component is responsible for actually performing the actions associated with the
agent� which could range from direct responses to queries to simply performing tasks laid out
in a global schedule� The simplest Execute component does not do much of anything� as the
speci�c mechanism for executing tasks is usually domain dependent� Instead� it functions more
as a template� so that component writers will have an idea what to expect in derived Execute
components�

Name� agent�mass�Execute
Extends� agent�simplest�Execute
Depends� Communicate� State

Parameters� Location� Display� RunDisplay
Fires� None

Listens� Communicate�MessageEvent� State�PropertyChangeEvent

The Mass Execute component builds on the simplest template described above by adding the
functionality needed to simulate execution� It uses a PropertyChange event stream from State
to watch for changes in the global T�MS ��� task structure� which may or may not contain an
execution schedule� If a schedule is found� it selects the �rst method from the list and sends it to
the simulation controller to be executed� The Execute component then makes use of a Message
event stream from Communicate to watch for the completion of its task� which the controller will
send to the agent at the correct time� Upon receipt of this completion noti�cation� Execute will
read in the method�s execution characteristics and �re an ActionEvent� Because this behavior is
encapsulated within the Execute component� the fact that the methods are simulated is transparent�
which makes the overall design less domain dependent�

As noted in the synopsis� Execute also recognizes three new parameters� which it uses to produce
a visual display of the agent at the simulator� It continues to monitor changes to these variables
using the same PropertyChange event stream mentioned above� notifying the simulator if an update
occurs�

��� Log

Name� agent�simplest�Log
Extends� agent�base�AgentComponent
Depends� State

Parameters� LogLevel
Fires� None

Listens� State�PropertyChangeEvent

�



The Log component is a simple logging class� which provides generic methods to facilitate both
general and event stream logging to the standard error stream� Each string to be logged has
associated with it a level� assigned by the caller� If this level is less than or equal to Log�s internal
log level� the string is recorded� otherwise it is thrown out� Log messages are automatically tagged
with the actual time� execution thread name� agent name and agent time� The latter two are
obtained by watching for changes to the Time and Name properties in the PropertyChange event
stream�

Name� agent�simplest�FileLog
Extends� agent�simplest�Log
Depends� None

Parameters� None
Fires� None

Listens� None

FileLog is a trivial subclass of Log� with the exception that a �le name is speci�ed as the
destination for the log messages� rather than standard error� Both overwrite and append modes
are supported� Note that a component dependent on �Log� could use either FileLog or its base
component� Log� without changing a single line of code� This is good example of how substring name
matching and a common interface can be exploited to permit seamless component replacement�

��� State

Name� agent�simplest�State
Extends� agent�base�AgentComponent
Depends� Log

Parameters� Name
Fires� PropertyChangeEvent

Listens� None

The State component is identical to that described in the architecture section�

Name� agent�mass�State
Extends� agent�simplest�State
Depends� Communicate

Parameters� Name
Fires� None

Listens� Communicate�MessageEvent

The Mass State component adds support for remote property queries and changes by monitoring
Communicate�s Message event stream� It also allows the system designer to specify an arbitrary
number of constraints� represented with a supplied Constraint class� both within a con�guration
�le or as supplied remotely by the simulation controller�


�



��� Problem Solver

Name� agent�mass�ProblemSolver
Extends� agent�base�AgentComponent
Depends� Log� State� Communicate� Execute

Parameters� Name
Fires� PropertyChangeEvent

Listens� Communicate�MessageEvent� Execute�ActionEvent

In a typical agent� the problem solver will act as an instigator to other components� It may be
responsible for discovering and evaluating problems or goals� and determining how best they can be
solved or achieved� Within the Mass architecture� though� the problem solving component has been
replaced with a more domain independent mechanism relying on pre�formed task structures rather
than complex behavioral algorithms� The job of creating task structures for individual agents has
been delegated to a task generator� housed within the centralized simulation controller� When a
simulation scenario begins� this generator is responsible for distributing the task structures� which
the agents then make use of as if they were created locally�

The Mass problem solving component� then� is responsible for receiving this task structure from
the generator� Once the structure has been obtained� it is run through a design�to�criteria scheduling
utility �
��� which attempts to produce a schedule satisfying the agent�s execution criteria� The
schedule is then incorporated into the task structure by the problem solver� and placed in State�s
property table�

It should be noted that with the simple replacement of this component� the agent could exhibit
very di�erent behavior� yet still function correctly within the Mass environment� By separating
the actual communication and execution processes� a substantial problem solver with interesting
behavior could replace this component without the need to modify other parts of the agent�

��� Integration

Execute

ProblemSolver

Log

Control

Communicate

State

Network Data

Log Data

Static Link
Dynamic Link
External Stream

External State

Figure �� Event stream diagram for the Mass agent

Now that each of the individual components have been examined� it may be useful to see how they
are combined and work in conjunction with one another� Using Sun�s beanbox tool� six components







are �rst joined together in the applet that acts as a shell holding them together� agent�mass�Control�
agent�mass�Communicate� agent�mass�Execute� agent�simplest�Log� agent�mass�State� and agent��
mass�ProblemSolver� Since much of their connectivity is represented statically within their source
code� very few stream connections need to be added to the group� In particular� only Message�
Event�messageReceived� MessageEvent�messageSent and PropertyEvent�propertyAdded are sent to
Log�s generic event logging function� Beanbox�s property setting interface is also used to set Commu�
nicate�s host id and port number and Log�s logging level� Once completed� beanbox automatically
generates and compiles the support and applet code� and then stores the necessary classes within
several JAR �Java ARchive� �les� The �nal structural design can be see in Figure �� static links
refer to source code references� dynamic links are those speci�ed within beanbox�

Additional con�guration elements� such as the agent�s name� location� etc� are placed in a
con�guration �le� A utility was then used to generate the necessary command and command line
parameters to correctly instantiate the agent� Execution begins with the main method within
agent�mass�Control� This function creates the applet context necessary to run the applet class
produced by the beanbox tool� After the applet class re�instantiates each of the components� the
Control performs system dependency veri�cation� It then initializes each component� during which
the bulk of the event stream connections are created� State also gathers the runtime parameters at
this time� �ring a PropertyEvent for each added variable� After initialization� Control starts each
component� All of the components� with the exception of Communicate� are essentially idle at this
time� Communicate begins by opening a connection to the simulator� followed by the expected
registration handshake which lets the simulator know a compliant agent is connecting�

After the connection is established� the simulator establishes and assigns a unique name to the
agent by sending messages the State component can receive and act upon because of its incoming
MessageEvent stream� The scenario continues with the simulator sending a time pulse to the agent�
Communicate recognizes the pulse message in its preprocessor� and increments the agent�s local
Clock property� Since no other incoming messages have been queued� Communicate immediately
acknowledges the pulse with a message back to the simulator� ending the time segment� The
simulator also send noti�cation of the availability of a new T�MS task structure� a control message
which gets �red immediately� ProblemSolver sees the new task structure message and fetches the
data from the simulator� After creating a schedule using the task structure� ProblemSolver stores
the entire structure in State�s table� which causes a PropertyEvent to �re� Execute notices this
event� and would halt its currently executing action if it had one�

At the beginning of the second time segment� the simulator sends another pulse message� The
Communicator again increments the local clock and �res the pulse event to the other local com�
ponents� Because a schedule has now been created� Execute responds to this pulse message by
fetching the �rst scheduled task and shipping it o� to the simulator� The time segment then ends
with Communicate acknowledging the pulse� Several more pulses go by uneventfully� because the
agent is waiting for its action to complete� Eventually� the simulator sends back the execution
results� which the Execute component retrieves and interprets� It then �res these results to the
other components and begins a new task� This process continues until the scenario completes�

This relatively simple example should demonstrate how the behavior of the framework is some�
what di�erent than traditional programming� The event driven mechanism which is used provides
the power necessary to exhibit useful behaviors while maintaining clean modular separation�


�



� Hypothetical Components

Following up on the examples described in the previous section� I will now give examples of how
other hypothetical components could be added to this particular agent� I will concentrate on both
the bene�ts and drawbacks of the framework in these examples� and will leave domain issues to
the reader�s imagination� The �rst example is the relatively non�intrusive addition of a learning
component� Following this� I will go over how true method execution could be intermingled within
a simulated environment�

��� Learning

The learning component to be added to the agent will make use of statistical information to help
re�ne the agent�s internal model of its behavior� in an attempt to make its decision making process
more accurate� To do this� the component will monitor the actions the agent performs� watching
such things as quality� cost and duration� and compare them to the expected performance of those
actions� It will then use this information to update the model the agent uses when deciding which
goals to attempt and how it attempts to achieve them�

To monitor the agent�s activity� the learning component �rst links to the Execute component�s
ActionEvent stream� Any time an action is completed or aborted� the pertinent information related
to that activity will be send over this stream� Using whatever statistical techniques are applicable�
the component can use this information to build its own internal view of the characteristics and
trends the agent�s activities are exhibiting� The component can then retrieve the T�MS task
structure stored in the state table� and compare the expected values to those it observed� If changes
are necessary� it will make them� and then store the structure back in the state table�

Only minor modi�cations to two other components are needed to integrate the new learning
component� First� the ProblemSolver needs to watch for changes in the T�MS task structure�
If changes do occur� it needs to verify that it is performing the correct activities� or create a new
schedule if this is not true� Second� the Execute component should be modi�ed to be more tolerant of
changes to the global task structure� Speci�cally� it should only cancel and restart action execution
if the currently available schedule is changed� rather than when the any part of the task structure
changes� as is currently the case�

��� Heterogeneous Execution

While it is useful to have a mechanism for simply simulating the execution of a particular task� it
is sometimes necessary for an agent to have the actual results one would normally obtain from the
action� At the same time� it is still necessary for these actions to be monitored and modi�ed by the
simulation controller for the environment to act coherently�

One additional component� able to perform some subset of the available methods� is needed
to add this functionality� This component should be able to examine the action characteristics
returned by the simulator and produce results matching those characteristics� For instance� if the
simulator reports that the results have no quality� the new execution component should recognize
this and produce some sort of invalid result� Once this component is designed� it can be placed
in�line with the original Execute component� along with some stream redirections� to produce the
desired e�ect�


�



Using this design� the existing Execute component would still monitor the schedule and send
simulated method execution requests to the simulator� Upon receipt of the completion message�
though� it would no longer �re an ActionEvent to the original components� Instead� only the new
execution component would receive these messages� It would then examine the event and determine
if actual results are needed or not� After creating and integrating these results� it would then �re
an updated ActionEvent to those components which would normally monitor the stream arising
from the Execute component�

This is a fairly simple change to make� but there are some underlying implementation problems
which need to be handled� The �rst is that the static references to the Execute component must be
changed in some way� It is true that the new component could be named �RealExecute� or some
other phrase that would substring match Execute� but the fact that the original Execute component
will still exist in the framework will cause a race condition within the registration process� The
names are unordered within the component registry� so requests for �Execute� would not necessarily
produce the desired results� There are three viable solutions to the problem� change the original
references to explicitly request �RealExecute�� generate the links by hand within the beanbox tool�
or have a single subclass of Execute rather than have two related instances�

� Present and Future Directions

The generic Mass agent described in the Example Agent section has been successfully implemented
and used with the Mass environment� Four identical agents were used to simulate an example of
the multi�agent organization described by the Warren �nancial portfolio management system ����
In our simulation� the initial behavior of each agent was governed by the subjective T�MS task
structures seeded to each agent �see section ��
�� which was used by the Design�to�Criteria scheduler
to produce a sequence of actions aimed at satisfying a particular goal� Initial survivability scenarios
have also been tested� by simulating execution failures which prompt behavioral responses by the
agents�

In addition� the agent framework and Mass simulator are also being used in a more complicated
environment as part of a group class project� The goal of this project is to develop an intelligent
home simulation environment� where agents coordinate over resources and activities in an e�ort
to satisfy both local goals and global constraints� The Mass simulator and T�MS representation
have been updated to support resource models� and the user and agent interfaces improved� Minor
additions were made to the agent framework to support the new capabilities of the simulator and
facilitate agent construction� A wide range of agents are currently being modeled with the framework
as part of this project� including a water heater� dishwasher� air conditioner and co�ee pot� to name
a few� In each case� the designer only needed to modify the problem solving component of the
framework to produce the di�erent behaviors needed by these agents� validating in some sense my
prior ease of customization claim� At this time� several agents have been successfully implemented�
using new activity scheduling techniques and true agent�to�agent coordination� A new statistics
gathering component� reminiscent of the learning module described in section ��
� has also been
designed and seamlessly added to each agent without modi�cation to existing components�

In the coming months� I expect the development of the framework to continue with the design of
survivability detection and diagnosis components� One or more coordination components �based on
GPGP or using more ad hoc techniques� are also planned for development� Modular designs in this


�



case will theoretically permit us to easily use one or another of these components interchangeably�
facilitating the construction and testing process�

� Conclusion

Component design is an interesting and useful software engineering technique which can greatly
facilitate RAD �rapid application development� and code reusability� It is my belief that it is par�
ticularly applicable to agent design� because of the functional redundancy which exists in many
systems� It can also improve compatibility between existing technologies because of interface con�
ventions� which can assist in the integration process� The end results are programs which have
cleaner designs� are better understood and more robust�

The architecture presented in this paper was designed with these goals in mind� and doubtless
will continue to evolve as new situations arise� Future work on this project will attempt to provide
more control over the event delivery process� including ordering constraints and dynamic response
to the event source� Human interface construction may also be formalized or facilitated� It is hoped
that as the base of �nished components grows� more sophisticated systems can be designed and
tested� as reusable components permit the simple construction of heterogeneous but compatible
agents�

References

�
� Frank M� Carrano� Data Abstraction and Problem Solving with C��� The Ben�
jamin�Cummings Publishing Company� Inc�� Redwood City� CA� 
����

��� Keith S� Decker� Task environment centered simulation� In M� Prietula� K� Carley� and
L� Gasser� editors� Simulating Organizations� Computational Models of Institutions and
Groups� AAAI Press�MIT Press� 
��
� Forthcoming�

��� Alden DeSoto� Using the beans development kit 
��� http���www�javasoft�com� 
��	�

��� Graham Hamilton �Editor�� Sun microsystems java beans api speci�cation�
http���java�sun�com�beans� 
��	�

��� Robert Englander� Developing Java Beans� O�Reilly � Associates� Inc�� 
��	�

�
� David Flanagan� JAVA in a Nutshell� O�Reilly � Associates� Inc�� �nd edition edition� 
��	�

�	� Victor Lesser� Bryan Horling� Frank Klassner� Anita Raja� Thomas Wagner� and Shelley XQ�
Zhang� BIG� A resource�bounded information gathering agent� In Proceedings of the Fifteenth
National Conference on Arti�cial Intelligence �AAAI�	
�� July 
���� To appear� See also
UMass CS Technical Reports ����� and �	����

��� K� Sycara� K� Decker� and M� Williamson� Matchmaking and brokering� In Proceedings of the
Second International Conference on Multi�Agent Systems �ICMAS�	��� 
��
�


�



��� Regis Vincent� Bryan Horling� Tom Wagner� and Victor Lesser� Survivability simulator for
multi�agent adaptive coordination� In International Conference on Web�Based Modeling and
Simulation� San Diego� CA� 
���� SCS �eds��

�
�� Thomas Wagner� Alan Garvey� and Victor Lesser� Criteria�Directed Heuristic Task Scheduling�
International Journal of Approximate Reasoning
 Special Issue on Scheduling� 
���� To appear�
Also available as UMASS CS TR��	����

�

� Tom Wagner� Matchmaking� Jil meets t�ms� Version June� 
� 
��	�






