
The Farm Distributed Simulation Environment �

Bryan Horling, Roger Mailler, Victor Lesser

Multi-Agent Systems Lab
University of Massachusetts
Amherst, MA 01003-9264

�bhorling,mailler,lesser�@cs.umass.edu

Abstract. In this paper we introduce Farm, a distributed simulation environment
for simulating large-scale multi-agent systems. Farm uses a component-based ar-
chitecture, allowing the researcher to easily modify and augment the simulation,
as well as distribute the various pieces to spread the computational load and im-
prove running time. Technical details of Farm’s architecture are described, along
with discussion of the rationale behind this design. Performance graphs are pro-
vided, along with a brief discussion of the environments currently being modeled
with Farm.

1 Introduction

A tension exists in simulation frameworks which trades off the inherent richness of the
provided environment, and the flexibility and ease with which that same environment
can be used to analyze a particular aspect of a larger solution. On one hand, robust
simulation environments can offer many enabling technologies that both increase the
fidelity of the simulation, and provide a range of services that the participants may use
to their advantage. These same features, however, can be an obstacle if the goal is to
evaluate a particular technology in the absence of complicating factors.

Our prior work in the area of multi-agent simulation environments [19] resides in the
former category; it provides a wide range of services in an attempt to create a realistic
environment in which agents can perform and be evaluated. While using this approach
is an important step in agent development, our experience has shown that it may also be
helpful to extract key technologies from such an environment, and rigorously test them
under conditions that have fewer distractions. For example, we will discuss a resource
allocation technique that was more easily tested without many of the unrelated domain
complexities. Performing these more focused tests has the dual advantages of reducing

� Effort sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory Air Force Materiel Command, USAF, under agreements num-
ber F30602-99-2-0525 and DOD DABT63-99-1-0004. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. This material is also based upon work supported by the National Science
Foundation under Grant No. IIS-9812755. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), Air Force Research Laboratory or the U.S. Government.



possible artifacts from unrelated events, and improving the time needed for analysis by
reducing the simulation overhead.

Our recent work addressing negotiation-based resource allocation [12] is a good
example of this tension. The full-scale solution was developed by implementing fine-
grained, sophisticated agents in JAF [19] using a detailed domain-specific simulation
tool called Radsim [10]. Test scenarios were quite realistic, where agents were required
to manage all aspects of a tracking multiple targets using a distributed network of sen-
sors. This necessitated solutions for a range of issues, such as organizational design,
dealing with noisy or uncertain data, managing agent loads, handling unreliable com-
munication, disambiguating targets, etc [10]. Although each of these are important in
their own right, and some have important effects on negotiation, many are orthogonal to
the original resource allocation problem. We found that operating under such conditions
not only distracted from this original goal, but also failed to illuminate potential flaws
in the negotiation scheme. Negotiation errors were sometimes mis-attributed to related
subsystems and we were unable to scale the collection of fine-grained agents using a
reasonable number of processors.

In this paper we will present Farm, a distributed simulation environment designed
to facilitate the analysis of the quantitative aspects of large-scale, real-time multi-agent
systems. In particular, Farm provides essential base functionality needed to drive a
multi-agent system, in such a way that elements such as the scalability, real-time con-
vergence rate and dynamics of a particular system can readily be evaluated and com-
pared. Farm has, in some sense, taken a step back by moving to a lighter weight im-
plementation to provide an environment where multi-agent subsystems may be quickly
developed and evaluated. Similar to [4], we are also interested in scaling up the size of
scenarios, while reducing the time needed to run time.

Farm is a component-based, distributed simulation environment written in Java. In-
dividual components have responsibility for particular encapsulated aspects of the sim-
ulation. For example, they may consist of agent clusters, visualization or analysis tools,
environmental or scenario drivers, or provide some other utility or autonomous func-
tionality. These components or agent clusters may be distributed across multiple servers
to exploit parallelism, avoid memory bottlenecks, or use local resources. In addition,
the set of components used in a particular scenario is not fixed - a limited set might be
instantiated initially to reduce the simulation overhead, and components may also be
dynamically added or removed at runtime as needed.

The agents operating in the system are the true subjects of the simulation. These
are typically (but not necessarily) light-weight, partially autonomous entities that have
a defined goal or role to fulfill within a larger domain context. Agents may be hetero-
geneous, either by instantiating the same type of agent with different parameters, or
by using different classes of agent. Each exists as a thread, with its own local memory
and control flow. To distribute the load incurred by the agent population, Farm orga-
nizes them into clusters, where each cluster exists under the control of a parent agent
managing component that provides access to the rest of the simulation environment.

The agents themselves run in pseudo real-time, where individual agents are each
allocated a specific amount of real CPU time in which to run. This aspect allows the
systems to exhibit a fair amount of temporal realism, where the efficiency of an agent’s



Target Speed
0 2 4 6 8 10 12 14

U
til

ity

0

5

10

15

20

25

30

35

40

Utility Differences by Target Speed

Negotiate

Random

Fig. 1. The effect of increasing target speed on the utility obtained by two different sensor alloca-
tion schemes.

activities can have quantifiable effects on performance in domains where the passage of
time matters. For example, in the distributed sensor network domain we describe later,
a sensor allocation scheme requires a certain amount of time to decide on an allocation.
The amount of time available depends in part on the speed at which the target is mov-
ing. Because this time is accounted for in Farm, the target of the sensing has the chance
to move away from the sensor while the allocation is being generated, producing lower
utility despite having an otherwise valid allocation. This effect can be seen in Figure 1.
In that figure we compare the utility obtained by two allocation schemes as the target
speeds are increased. The negotiate scheme requires time in which to compare allo-
cations and communicate, while the random scheme simply picks sensors and ignores
potential conflicts. Given enough time, the former produces a better result, while the
latter gets a higher utility when time is scarce. A detailed discussion of these particu-
lar results is tangential here, we provide them as a motivating example of a situation
where the temporal constraints of a situation are important, and can be captured by
the environment provided by Farm. Communication actions are similarly modeled and
monitored in such a way that message delivery times appropriate for the domain can be
simulated.

Farm has been used to model four different domains, including a variety of agents
implementing different types of solutions for these domains. Scenarios consisting of
5000 autonomous agents have been run using 10 desktop-class Linux boxes. These
environments will be discussed in more detail later in this paper.

In the following section, we will provide a brief overview of the Farm simulator,
followed by a discussion of how Farm relates to other MAS simulation environments.
A more detailed look at Farm’s architecture is provided in section 3, along with a more
in-depth examination of some of those features. We will conclude with examples of the
environments that Farm has been used to create, and how Farm’s capabilities were used
in their design.



Analyses
• State / trend analysis

GUIs
• State visualization

Driver
• Non-agent activity

Farm Core
• Plug-in management
• State maintenance

• Control flow

…
Agent Agent Agent

Meta-Agent
• Thread scheduling

• Communication
• State access / cache

… Agent Agent Agent

Meta-Agent
• Thread scheduling

• Communication
• State access / cache

… Agent Agent Agent

Meta-Agent
• Thread scheduling

• Communication
• State access / cache

…

Fig. 2. An example of Farm’s component architecture.

2 Overview

As mentioned earlier, Farm is a distributed, component-based simulation environment.
By distributed, we mean that discrete parts of the environment may reside on physi-
cally separate computing systems. In general, no assumptions are made about the type
of system a part is run on, with respect to its operating system, memory or disk ar-
chitecture. In particular, all that is required is a Java interpreter, and a means for that
part to communicate with other parts of the environment (e.g. some sort of network
connection).

Each part, or component, in this simulation environment is responsible for some as-
pect of the simulation. Figure 2 shows how a typical set of components in the simulation
are related. The hub of activity is the Farm core, which serves as a connection point for
components, and also drives the control flow in the system as a whole. The connected
components then fall into two categories: those which directly manage the agents run-
ning in the system, and those which exist to support those agents or the scenario as a
whole. These agent managers are called meta-agents, as each acts as an interface to and
for a cluster of one or more agents. This organization is solely for efficiency purposes,
it has no effect on the outcome of the simulation, and the individual agents do not know
what meta-agent they are controlled by. Agents are implemented are threads, although
this is only for performance purposes - from an agent’s perspective they are completely
segregated, and are not aware of or share memory with other agents which happen to
also be resident at the same meta-agent.

At runtime, agents are provided time in which to run, and other components (such as
the drivers, analyses, and GUIs from figure 2) are given the opportunity to perform, an-
alyze, or modify the simulation at well-determined times. The run cycle is partitioned
such that tasks such as state maintenance or analysis may be performed without ad-
versely affecting the simulation results, even if they require indeterminate time. This is
covered in more detail in section 3.1. Such tasks are facilitated by the ability to store
and retrieve global state information, which allows any given component to interact



Metagents
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

T
im

e 
(m

in
)

0

20

40

60

80

100

120

140

160
Farm

Optimal

Fig. 3. The effect of increasing the number of meta-agents on simulation duration.

with a snapshot of the system’s current state. The design of this data storage is covered
in section 3.2.

3 Architecture

As mentioned earlier, a simulation environment built using Farm is comprised of a num-
ber of components. Central to this arrangement is the Farm core, which handles compo-
nent, control and state management. The meta-agents, specialized components which
manage clusters of actual agents, implement much of the architectural-level functional-
ity supporting those agents. More generally, component plugins provide the remainder
of the system’s non-agent capabilities, typically including both domain-independent
and domain-specific elements which create, manage and analyze the environmental
state. An arbitrary set of components may be used for a given simulation scenario.
For example, one might choose to reduce simulation overhead by running without vi-
sualization, or with it to get a clearer picture of the system’s state. Multiple, different
analysis components could be used to capture different aspects of the system. Different
environmental drivers could be used, depending on what type of scenario is desired.
Some additional discussion of the plugin types we have used can be found in section 4.

Whereas the types of the selected plugins are important in providing the capabilities
and character of the simulation, it is just the total number of meta-agents which we are
concerned about. The meta-agents are usually identical in functionality, and the size of
the meta-agent set dictates how the load incurred by the agent population is distributed.
Intuitively, in an environment with 100 agents, 5 meta-agents managing 20 agents each
will run faster than a single meta-agent with all 100 agents. Experimental results look-
ing at the effects of increasing the number of meta-agents can be seen in Figure 3,
which shows its effect on total simulation time. The experimental setup consisted of a
scenario containing 100 agents over a period of 60 seconds, using between one and five
meta-agents. Recall that our goal is to provide each agent with an equal share of time,
independent of what tasks the agents are actually performing. Ignoring the fact that an



individual agent will in reality map to a single meta-agent, an optimal system’s duration
would then exactly distribute the total runtime across all available meta-agents:

��� ������� �	���
�� ����

������� ���� ������ ��� �������

...or 100 minutes with a single meta-agent. This duration would decrease at a rate in-
versely proportional to the number of additional meta-agents until they reach a 1:1 ratio
with the agent population. Farm closely models the behavior of an optimal system, with
differences between the two largely attributable to Farm’s environmental modeling and
component communication. The number of meta-agents can be increased arbitrarily,
although it generally does not make sense to allocate more than one per processor.

Closely related to the total number of meta-agents is the load placed on each of
them. Up to this point, we have assumed that agents allocated some duration of time
will always require and use all that time. In practice, especially when agents can interact
and may rely on one another for data, agents may have a considerable amount of idle
time where they are awaiting a notification of one form or another. Farm allows agents
to signal that they have no further actions to perform, so that they may preemptively re-
lease the time they have been allocated. In this way, they can reduce the actual runtime
required, without changing the conceptual amount of time they have consumed in the
simulation. If this capability is used, then the uniformity of agent load we have assumed
so far may be incorrect, since some agents will be consuming different amounts of real
processing time despite the fact that they all have identical simulated processing time.
If there are different classes of agents, which may exhibit these different runtime char-
acteristics, then this distribution should also be reflected in the allocation to avoid the
need to estimate their actual computational requirements a priori. For example, if we
have 5 meta-agents, 80 agents of type � and 20 of type �, a good allocation would place
��� and �� on each meta-agent because the load assigned to each meta-agent would be
most evenly balanced This scenario assumes no additional knowledge about the agents.
If more details are available a more efficient allocation could be found, by reducing
inter-meta-agent communication, for example. This will only affect the runtime char-
acteristics of the simulation, and not affect the behavior of the agents themselves. The
environmental driver is responsible for this allocation; it is provided with the number of
meta-agents, which it uses with it’s internal characterization of the desired scenario to
decide upon an allocation of agents.

3.1 Control Flow

As the system starts up, the core acts as a registry for components, which contact the
core as they are invoked. Components start by performing an initialization sequence,
after which they wait for direction from the core.

Control in the simulation is concerned with the passage of time. Our ultimate goal
in this is to ensure that each agent in the system is provided the same amount of physical
CPU time, to evaluate how those agents would perform in a continuous-time environ-
ment. In a perfect simulation, all agents would be able to operate asynchronously in
parallel. However, competition for the local processor by agents resident at the same



meta-agent precludes this option if we wish to ensure fairness among them, and hav-
ing one processor per agent is clearly infeasible for large numbers of agents. Thus, we
approximate this behavior by sequentially assigning individual agents a slice of time in
which to run. In between such opportunities an agent thread is paused, so the currently
running agent has exclusive access to the CPU, as much as this is possible in a multi-
tasking system. The simulation thus approximates how the agent population as a whole
would act under real-time conditions, by breaking the timeline into a series of slices
and providing each agent the appropriate amount of time to run for each slice.

This process is separated into two different components of the simulator: the core
and meta-agents. The core starts a pulse by notifying all meta-agents in parallel that
their agents may run for some duration of time. Each meta-agent then sequentially
wakes their local agents, and indicates the specified amount of time which they have
available to them. We refer to this process as the agents receiving a pulse of time in
which to run. Ideally, the meta-agent would externally recognize when this time had
expired, and halt the agent’s thread preemptively. However, this technique can lead to
deadlocks and other undesirable, nondeterministic behaviors that affect the real-time
performance of other agents in the simulation, especially if the agent is interacting
with a remote third party at the time of the preemption. To address this, agents are
provided with a simple time-checking function which should be called periodically, that
internally tracks how much time has been utilized. When their allotment has elapsed,
this function blocks and notifies the meta-agent of completion. At the beginning the
next pulse, the thread is restarted from this same location, so only a minor intrusion
into the agent’s code is required.

Just before and after this pulse is sent to the meta-agents, all components in the
simulation are allowed an indeterminate amount of time in which to run. For example,
before the agents are pulsed, a driver might update environmental data (e.g. a moving
target’s position). After a pulse, analysis tools might take time to update statistics or
visualizations. Because the agents are halted during this time, and the duration of these
activities will not affect the results of the simulation, the designer is free to perform any
number of activities during this period (at the expense, of course, of possibly increasing
how long the simulation takes to run). The process of providing time before, during, and
after each pulse is repeated by the simulation core until the simulation is completed.

Because of this style of control flow, interactions do not take place between agents
within a single time pulse - the effects of one agent will not be observable by another
until that pulse has ended. This can lead to a certain amount of data, communication or
behavioral incoherence in the system, the duration of which is bounded by the length of
the time slice. For example, messages cannot be delivered faster than the pulse duration.
In another situation, the effect of one agent’s action will not be observable by another
immediately, but must wait until the following pulse when the result of that action can
be shared. Mechanisms for addressing this issue are covered in more detail in section
3.5.

The pseudo real-time nature of this control implies a certain amount of non-determinism
to otherwise identical scenarios, as external events may effect the actual amount of pro-
cessing time an agent receives during a window of real time. If determinism is required,
Farm also supports a fixed notion of pulse time, which tracks the agent’s execution



progress, rather than just elapsed time. For example, instead of allocating 100ms per
pulse, agents could be allocated a single pass through their main event loop. Thus, for
each pulse, each agent’s pulsemethod would be called once, and (assuming the agents
themselves are deterministic) the scenario as a whole will be deterministic because the
same sequence of activities will be performed for each run. This allows repeatability,
but prevents one from drawing strong conclusions about how the agents behave in real
time.

3.2 Data Flow

The Farm provides the components in the simulation with a data storage facility with
characteristics similar to distributed shared memory. This is not inter-agent shared mem-
ory (agents are still assumed to interact via messaging), but instead provides an indirect
means of interaction between the simulation components and a way to deliver environ-
mental information to the agents. Using this scheme, components may store and retrieve
data (properties) from a functionally common repository, enabling the data produced
by one part of the simulation to be used by another. For example, an environmental
driver might be responsible for updating the Target1:Location property. Agents
needing to know that target’s location can then simply access this property. Similarly,
each agent could store some notion of it’s current state in, for instance, the property
Agent1:State. An analysis component could then find all properties *:State to
capture a snapshot of all the agents in the system.

Distributed data storage is accomplished in Farm through the use of a token system.
Each globally-accessible property is associated with a token, which may be resident in
the simulator core or at any one of the plugins. The owner of the token for a particular
property is responsible for its storage; all reads and writes to that value are performed
by or through it. The Farm core itself is responsible for keeping track of who owns the
token for each property, somewhat like a specialized directory service. When a property
is to be read for the first time by an entity, it optimistically assumes that it is stored at the
core, and makes a request to the simulator for it. If it is being stored there, the property’s
data will be delivered and the process continued uninterrupted. If a different plugin is
the owner of that property, the core instead provides the requester with the name of that
plugin. This can be used to contact the appropriate plugin and retrieve the data. This
property-plugin mapping is then cached so future requests can be made directly to the
owner plugin. Because plugins may leave, have their tokens removed, or otherwise lose
control of a property, such future requests may fail. In this case the requester will again
revert to the default assumption that the core itself is storing the property, since the core
will either return the data or redirect the reader as needed.

Property writes occur in a similar manner. If the writing entity has a cached property-
plugin mapping, then it will contact the appropriate plugin with the new data to be
written. If no such mapping exists, or if the property is controlled by the core, then
the simulator itself is contacted. As with reading, the simulator may store the data it-
self, or redirect the writer to the appropriate owner plugin. Because property owners
may change over time, writers will again fall back to the default assumption that the
property may be controlled by the core if the local knowledge is out of date. We will
assume from here on that the plugins fulfill all of the storage responsibilities; simulation



core storage is generally only used as a fail-safe mechanism in case a plugin fails or is
otherwise unavailable.

An additional mechanism also exists which allows plugins to be automatically up-
dated with a property’s data when it is updated. A list of recipients is attached to the
owner’s token, so when the property is changed the new value can be automatically
pushed to each member of the list. This pushed data is flagged as being cached, so the
recipient knows it can safely read from the data, but writes must still be propagated
back to the owner. The owner is responsible for ensuring that this remotely cached data
is kept up to date.

This token-based scheme is really just a support structure; the more interesting prob-
lem is determining which plugin should be assigned to manage a particular property,
and what other plugins should be included in that property’s recipient list. The differ-
ence between the duration of local and remote writes and reads can be as much as two
orders of magnitude1, caused by the messaging duration and the time needed to encode
and decode the information. As the number of data accesses grows, this overhead has
the potential to add a noticeable amount of time to the duration of the simulation. Be-
cause the time needed to perform remote accesses can be a significant overhead cost in
this framework our objective is to minimize the number of messages needed to support
each property, under the assumption that this will similarly minimize the overall time
cost associated with that property. The total size of the data being transferred is typi-
cally uniformly small enough that it can be ignored. We have explored several different
strategies to address this cost. If we view a particular allocation as being constant for
the duration of a simulation, this cost � �

� can be estimated with the following function
for a particular plugin � accessing property �:

��
� 	

��
�

 � 	 ��

� �
� � � ��

� �
� ���

� otherwise
(1)

� is the set of available plugins, �� is the designated owner of the property, and ��
is the list of recipients to which the property will be automatically pushed. � �

� and � �
�

are the number of reads and writes of � by �, respectively. The total cost for property �,
including strategy overhead, is then:

�� 	
�
���

��
� � �

�
���

� �
� �� ����� �� � ������ (2)

In addition to the remote access and push costs, �� also includes the overhead
needed to set up and (eventually) tear down the owner relationship, in addition to the
overhead needed to initiate pushing. This equation assumes an owner is assigned and
that �� and �� do not change. If �� is allowed to change over time, the last term will
then be Æ�� � ������, where Æ is the number of times ownership is assigned. If Æ � �
and the assignment is allowed to vary, then equation 2 is only an approximation; a more

1 Testing the average duration of 100,000 sequential, unloaded accesses showed that on average,
local reads/writes of a 10 character string took 0.0005/0.0044ms each, respectively. Remote
reads/writes took 0.7986/0.8081ms each.



precise computation of �� must take into account the costs incurred under each assign-
ment episode, rather than an overall aggregate. Note that in this revised formulation Æ
may also be zero, indicating no remote owner is assigned and the simulation core is the
de facto owner.

Strategies. Our objective is to find an optimal policy for choosing � � and �� so that
we can minimize ��. Because there are varied access patterns to particular pieces of
data, and can be near-continuous access to a single property by different plugins (for
example, an agent’s state being maintained by one and analyzed by another), it is not
clear that a single strategy will be best for all properties. In the extreme, if there is no
pattern to the accesses then an equally random assignment of ownership will be as good
as any other on average. Fortunately, since particular plugins have specified roles and
associated property needs there should be a definite pattern to the accesses. We will
evaluate several strategies to see which is appropriate for the types of simulations and
plugins we currently use.

Our baseline strategy (C) employs a simple but inefficient centralized assignment.
All properties are stored at the simulator core, so all accesses will be made remotely. In
this case, �� � ��

� 	 � �
� � ��

� . We will then evaluate the last writer (LW) strategy,
where the plugin which makes the last write access will be assigned ownership of the
property. In this case, the owner will change over time. Two analogous techniques are
evaluated where the first reader (FR) or writer (FW) is assigned ownership, which does
not change over the remainder of the simulation. In other tests, the last writer, first reader
and first writer strategies will be augmented with an aggressive push mechanism (LWP,
FRP, FWP), where all remote reads will result in the reading plugin being added to the
automatic push list for that property. A first-access, pushed strategy was also evaluated,
but dropped from these experiments because it was in all cases nearly identical to FWP,
since the vast majority of properties are written before a read is attempted.

Another strategy will add a so-called ”adjustable” push to the first reader and writer
strategies (FRAP, FWAP) using an exponential, recency-weighted usage estimation as
a form of online learning. This is done in constant space for each property using the
formula:

��
����

	 ��
��
� �������� ���

��
� (3)

���� represents the overhead-inducing activity associated with property � by plugin
� at time �. This value, reset to zero at the beginning of each time step, is incremented
by 1 each time � is read, and decremented by � each time it is pushed to �. A nonneg-
ative � indicates that � is being read locally at least as much as it is being pushed to
the agent (a desirable condition). � is the step-size parameter (
 � � � �), which con-
trols how much the historical values affect the estimate. In these experiments � 	 
�.
Then, ��

����
is the estimated amount of activity at time � � �, with which � can deter-

mine if it should change its membership status on �’s push list. If that estimate shows
that a push mechanism would reduce or exceed remote accesses and overhead, then
a push is requested or rejected respectively. In practice, a change is made only when

 � ��

����
� 
� to avoid thrashing. This strategy is similar to the PoP (push-or-pull)

strategy described in [2], although we use a somewhat simpler switching heuristic.



Type
C LW FR FW LWP FRP FWP S FRAP FWAP SAP

M
es

sa
ge

s 
(1

00
0s

)

0

10

20

30

40

50

60

70

80

90

Comparison of Different Token Assignment Strategies

Overhead

Remote Get

Remote Set

Type
C LW FR FW LWP FRP FWP S FRAP FWAP SAP

T
im

e 
(s

ec
)

290

300

310

320

330

340

350

Comparison of Different Token Assignment Strategies

(a) (b)

Fig. 4. Comparison of message activity and time between different property ownership strategies
in the DSN domain.

We will look at a technique which post-processes the access pattern (S), in an at-
tempt to learn what the most appropriate static assignment should be. In this case, the
owner and push lists are calculated as follows to minimize the total number of remote
accesses per property:

�� 	 �� � ����
� �
�
���

� �
� � (4)

�� 	 � � ����� � ����
� 	 ��

� (5)

Equation 4 specifies push targets as those which have a greater number reads than
the total number of writes, which equals the number of pushes they would receive.
Equation 5 selects the plugin which has the greatest cost, taking into account the benefits
of pushing which have just been calculated. After selecting ��, it is removed from ��
if necessary. Because this information is known a priori, we can avoid the overhead
needed to set up individual push requests. This information is instead bundled along
with the ownership message, resulting in fewer messages and a time cost, at the expense
of making a single message somewhat larger. We will also examine the effects of using
this learned policy to prime the initial state of the adjustable technique described earlier
(SAP).

Results. The strategies were evaluated using a distributed sensor allocation simulation,
consisting of nine plugins with varying access patterns. Each strategy was tested in 50
different random scenarios, and the total cost in terms of remote accesses and overhead
messages determined. Roughly 100 properties, accessed a total of 75,000 times, were
managed by the system. Remote accesses include any reads or writes to non-local data,
while overhead is the collection of messages needed to support the various schemes,
such as ownership notification, push requests and pushed data. The results are shown in
Figure 4.

The most obvious conclusion that can be drawn from these results is the reduction
in message activity permitted by the push-based technique. All six strategies which
employed it produced nearly half the messages of the best technique which did not, and



Type
C LW FR FW LWP FRP FWP S FRAP FWAP SAP

M
es

sa
ge

s 
(1

00
0s

)

0

20

40

60

80

100

Comparison of Different Token Assignment Strategies

Overhead

Remote Get

Remote Set

Type
C LW FR FW LWP FRP FWP S FRAP FWAP SAP

T
im

e 
(s

ec
)

100

120

140

160

180

200

220

240

260

280

Comparison of Different Token Assignment Strategies

(a) (b)

Fig. 5. Comparison of message activity and time between different property ownership strategies
in the graph coloring domain.

close to four times fewer messages than the simple centralized solution. This was caused
by the fact that there were some components, such as the analysis and graphing plugins,
which read from properties on every time pulse which were changed less frequently.
For example, if a particular property were updated only every other pulse, then the push
technique cuts the number of messages in half compared to one which remotely read
the value on every pulse.

Also apparent from Figure 4b was the fact that lowering the total level of messaging
does not strictly correspond to a reduction in time, even where computational overheads
are similar at first glance. The differences lie in the manner remote accesses have been
apportioned over the timeline. For example, the learned technique (S), although it has
at most an equal number of total messages and minimal runtime computational require-
ments, takes longer to complete than its counterparts which more aggressively pushed
data (e.g. LWP, FRP, FWP). In some cases, an additional measure of parallelism is cre-
ated, when a group of plugins set or push data to a plugin which would otherwise need
to retrieve that data serially. Other differences are observed because of the cumulative
effects of minor duration variances between strategies. In these tests, the allocations
generated by the S and FRP strategies produced a set of variables which were owned
by one of two plugins. One was a reader, the other a writer, so one of the two would be
forced to make a remote access for each property at each time pulse. In this particular
instance, it was observed that remote sets were approximately 1 ms slower than remote
gets for the same data. These small delays accumulated to produce a significant portion
of the overall duration differences between these two strategies.

A Student’s t-test was performed across all pairs of strategies. This showed that
the FRP and FRAP strategies took significantly less time than other strategies in this
domain (� � 
�

�), while they were indistinguishable from each other. In fact, none
of the adjustable strategies FRAP, FWAP, SAP took significantly less time (� � 
��)
than their static counterparts. This is a result of the relatively fixed access patterns that
take place for each property.

We have also tested these strategies in two other domains with different load pat-
terns. The first is a graph coloring scenario consisting of 12 plugins and 80 agents,
which attempt to solve a similarly sized 3-coloring graph using a distributed constraint



Type
C LW FR FW LWP FRP FWP S FRAP FWAP SAP

M
es

sa
ge

s 
(1

00
0s

)

0

200

400

600

800

1000

1200

1400

Comparison of Different Token Assignment Strategies

Overhead

Remote Get

Remote Set

Type
C LW FR FW LWP FRP FWP S FRAP FWAP SAP

T
im

e 
(s

ec
)

450

550

650

750

850

950

1050

Comparison of Different Token Assignment Strategies

(a) (b)

Fig. 6. Comparison of message activity and time between different property ownership strategies
in the learning domain.

Domain LW FR FW LWP FRP FWP S FRAP FWAP SAP
DSN ���� ��� ���� ��� ��� ��� ��� ��� ��� ���

GC ����� ���� ����	 ���� 	��� ���� 	��� ���
 ���� �
��

L ���� ���� �	�� ���� ��� ���� ���� ���� ���� ���


Fig. 7. Percentage reduction in simulation duration versus centralized, observed under each strat-
egy in the distributed sensor network, graph coloring and learning domains.

satisfaction algorithm. This managed approximately 350 properties accessed 100,000
times over 100 pulses. We again see the FRP strategy doing well here, as does the S
strategy. In this case, the access patterns were such that the post-process analysis pro-
duced an assignment which naturally exploited parallelism, by having the analysis com-
ponent own many of the properties it required. This meant the agent plugins frequently
had to remotely set their data, but the bulk gets performed by the analysis component
were local, resulting in a net savings in time. The learned (S) strategy which produces
this allocation does best here (� � 
�

�), followed by FRP which also assigned own-
ership of these properties to the analysis component.

The second is a learning domain consisting of 14 plugins and 500 agents, which
are each learning an appropriate policy for a simple, individually random �-armed ban-
dit problem. This managed 1000 properties, accessed over 1 million times over 1000
pulses, but with a simpler usage pattern. Specifically, the use of mobile analysis code al-
lows the bulk of these properties (97%) to be used by just a single plugin. From Figure 6,
one can see how dramatically property relocation can reduce the amount of messaging
needed to support it, with corresponding decreases in total running time. The peculiar
fact that no components read from those properties leads to little differentiation from
strategies that push data, and poor performance of techniques where ownership is based
on reading. In the latter case the absence of readers means the properties stay resident
in the simulation core, so those accesses are all remote. In this case, the previously good
FRP strategy is no better than centralizing the data.

The quantitative reductions in time observed under each strategy are shown in Fig-
ure 7. Based on these tests, the learned (S) strategy, seems to offer the most consistent



performance in our typical scenarios, with time reductions of around 5%, 29% and 44%
across the three domains when compared to the default centralized strategy. However, it
does not it does uniformly produce the best results, it requires the user to generate data
needed to perform the analysis, and it will not adapt well to cases where the correct al-
locations vary widely from one episode to the next. The first reader push (FRP) strategy
offers similar or better performance in two out of the three domains with a 7% and 22%
reduction in time in DSN and graph coloring respectively, and one might argue that the
conditions in the learning domain are atypical. In our opinion, this strategy is the suit-
able choice for most domains, although there is clearly a need for an alternative under
some conditions. The first writer push (FWP) exhibits lower performance in two of the
domains, and also suffers from an worst case analogous to that seen in FRP (an absence
of writers). This also holds for the writer (LWP) strategy, with the additional caveat
that thrashing may occur in domains where two separate writers coexist. Although not
seen in these tests, we suspect that in domains where the usage pattern for properties
change over time that the adjustable reader strategy (FRAP) may prove best, because it
can adapt to changing conditions. However, this is not the case in our existing domains,
and the additional overhead usually causes a slight reduction in performance. Both this
and the learned technique would benefit from a richer representation of the potential
benefits of parallelism and more accurate message delivery costs, which could address
some of the deficiencies noted above.

Other Strategies. There are other techniques that have been developed for content
distribution networks and large scale storage systems which in theory are applicable
to this environment, but in practice we suspect that the cost-benefit ratio would not
be favorable. For instance, hierarchical distribution frameworks [16] are an effective
way of disseminating information. The facilities needed to support such a technique
would not be difficult to implement in the existing framework as an extension of the
push mechanism. However, we feel that given the typically small number of plugins
which need to access a particular property that the reduction in load provided by such
a hierarchy would be minimal. Multicast notification would be a useful way to reduce
the cost of pushed information if it were supported by the underlying network, but
relying on this limits where Farm can be used. A potential solution to this is application-
layer multicast [1], but because the underlying protocols are usually still unicast and the
distribution target pool is small, the benefits would seemingly be minimal. Consistency
relaxation [17], another mechanism which can be used to reduce traffic, is touched on
in section 3.5.

As alluded to above, Farm also uses Java’s RMI and serialization services to sup-
port mobile code, for cases where data retrieval bottlenecks are otherwise unavoidable.
With this technique, instead of remotely retrieving and locally processing a potentially
large amount of data, a specialized function is delivered to and run by directly by prop-
erty owners. This function can be written to use only local data, with the intention of
returning a more concise view to the originator. This is particularly useful for analy-
sis components, which frequently need to access data that scales in number with the
agent population. For example, the analysis component used in the learning domain
computes averages of two properties set by each agent. Because the analysis and meta-



Agent

Incoming
Messages

Outgoing
Messages

Agent

Incoming
Messages

Outgoing
Messages

Agent

Incoming
Messages

Outgoing
Messages

Meta-Agent
• Communication is performed outside of simulation core

• Agents send and receive messages through meta-agents
• Meta-agent then routes messages to destination

TCP From
Meta-Agents

TCP To
Meta-Agents

Fig. 8. Farm communication flow.

agent components are distinct, when running with a population of 500 agents, this will
immediately result in 1000 remote property gets or sets regardless of the strategy being
employed. We use mobile functions to avoid this by first computing local averages at
each plugin, and then transferring only these values. The dominating costs of this tech-
nique scale with the number of plugins, resulting in substantial savings in bandwidth
and time.

3.3 Communication

To improve scalability, communication takes place entirely outside of the core. Instead,
communication occurs between meta-agents, and individual agents send and receive
messages via their managing meta-agent, as shown in Figure 8. When a new meta-
agent registers with the core, all existing meta-agents are told about the addition, and
the new meta-agent is given a list of all other members - thus a fully-connected graph
of meta-agents is maintained. When an agent sends a message, it is added to a per-agent
outgoing queue. The meta-agent selects ready messages from these queues and checks
its address table to determine the recipient’s owning meta-agent. If the meta-agent is
found, the message is delivered. If it is not found, it uses the list of known meta-agents
to find the appropriate one, and that mapping is then recorded in the address table.
Thus each meta-agent will learn a mapping for only necessary destination agents. As
messages are received by a meta-agent, they are added to a per-agent incoming message
queue, which is polled by the agent as necessary.

We wish to have a relatively realistic network model, so care is taken when sending
messages. A potential race condition also exists for message delivery, as one agent’s
message may reach another agent before it has technically been sent in the global time
line. As messages are added to an agent’s outgoing queue, they are marked with a de-
livery time. The delivery time of a message will be that of the prior message in the
queue, plus a bounded random transit duration which can be weighted by the length of
the message. A message loss rate probability may also be set. At the end of a pulse,
each meta-agent searches the outgoing message queues of its local agents, and sends
messages if permitted by the assigned delivery times. These messages are queued for
delivery at the destination meta-agent. At the beginning of the next pulse, those received



Agents
100 300 500 700 900 1100

T
im

e 
(m

in
)

0

10

20

30

40

50

60

70

80

Fig. 9. The effect of increasing the number of agents on simulation duration.

messages are delivered to the appropriate incoming queue for each agent. The agent is
then responsible for monitoring its queue and handling new messages. We are investi-
gating other potential communication paradigms, such as a defined routing network or
a distance-limited broadcast scheme, to provide additional communications scenarios
for agents to explore.

While this decentralized communication mechanism scales very well, it prevents
other components from directly observing or analyzing message traffic. Gross statis-
tics, such as total incoming and outgoing messages, are currently computed and stored
as global properties by individual meta-agents. Other statistics can be computed in a
similar manner to compensate for this design decision.

The exact messaging protocol is left intentionally unspecified and abstract. Agents
simply send Message objects, which can be extended as needed. The destination agent
then receives Message objects in its incoming queue. Parsing of the object is per-
formed automatically.

3.4 Scalability

Some discussion of the scalability of Farm has been mentioned earlier. The component
architecture of Farm, and specifically its ability to segregate the agent population into
groups under the control of distributed meta-agents, leads the environment to large scale
scenarios. Because the agents effectively run in parallel because of this distribution, the
primary constraint is having available computing power to run such simulations in a
reasonable amount of time.

Figure 9 shows a sample of Farm’s scalability characteristics, from the results of
a series of repeated trials with a scenario length of 60 seconds. The number of meta-
agents was fixed at five, and the number of agents gradually increased from 100 to 1000,
with a 1:4 ratio of targets to sensors. The distributed resource allocation domain from
section 4.1 was used, because the movement of targets provides a need for continual
re-evaluation and activity. The agents in this domain do actual problem solving, and



use communication to negotiate over areas of contention. The initial results seen in this
graph are promising.

In comparing the 100 agent point from Figure 9 with the 5 meta-agent point in 3,
one might also note a significant difference in simulation duration. For example, the
100 agent case here took only 6 minutes, as compared to 124 minutes previously. Both
experiments used the same machines, domain and agent population, but the trials from
Figure 9 allowed the agents to signal their meta-agent if they have no additional work
to do, using the technique mentioned earlier in section 3. This allows the agent’s pulse
cycle to be ended prematurely, with potentially large savings in actual running time
without loss of precision in the simulation results. In our scenario, if there are more
agents in an environment of constant size, there is a higher probability that additional
computation will be needed to resolve the correspondingly larger number of conflicts.
This is seen in non-linearity of the data in Figure 9, where disproportionately more time
is used in larger populations. In this way, the system avoids expending effort simulating
agents’ “idle” time, which gives Farm some of the benefit that a strictly event-based
simulation environment would posses.

Perhaps more interesting than “how large can it get?” is the question “what pre-
vents it from getting large?”. No design is perfect, and parts of Farm’s architecture can
inhibit scale in order to permit other features. Typically, the most constraining feature
is the remote access of data, as outlined in section 3.2. This is necessary to facilitate
state analysis, but excessive usage can accumulate a large time penalty. In general, such
scenarios will just take longer to process than if the data storage were completely dis-
tributed. If an appropriate allocation strategy is used, then in many cases data caching
and mobile code can ensure agents are not unduly penalized for the time required to
update remote data.

Another constraint, related to data flow, is environmental maintenance. The task
of creating and maintaining the simulation environment (e.g. placing sensors, moving
targets, etc.) is typically the responsibility of a single component. Like any other, this
component may be distributed for load balancing purposes, but it is still a single process
limited to the resources present at its local processor. Like the agents, it also accesses
state data, but since it has the responsibility of maintaining the entire state, the poten-
tial burden is much more concentrated. Extremely large, complex or dynamic environ-
ments might therefore benefit from separating the environmental maintenance into sep-
arate components, much as the agents themselves are separated. Thus, one might have
a target component, a sensor component, and the like, each with a specific, tractable
responsibility.

3.5 Coherency

Whenever an environment is distributed, the problem of coherency arises because en-
tities on one processor may have data inconsistent with that on another. One must try
to make sure that interactions between processors are as faithfully represented as those
occurring on the same processor.

The data consistency problem in Farm manifests itself in the time between when
one agent changes a value to when that change can be observed by another. In be-
tween those events, the system can lose some measure of coherence. Because Farm is



attempting to replicate the behavior of a centralized simulation, data storage should ex-
hibit strong coherence, and components always use the most up-to-date property when
possible. One could envision a system where a weaker form of coherence might be ac-
ceptable to some components (e.g. visualization) in order to reduce overheads. In this
case, techniques used to minimize the cost associated with maintaining such a heteroge-
neous population could be employed, as shown in [17]. However, due to the relatively
small population of plugins in a typical scenario, the costs associated with maintaining
such special cases may outweigh the potential benefits. We have previously outlined
Farm’s data dissemination technique in section 3.2. In the absence of cached informa-
tion, coherence is maintained by the single owner for each property, which handles all
read and write accesses for the property. These accesses are serialized by the owner,
ensuring that consistency is maintained. In the case where data has been pushed to and
cached by remote components, the owner is also responsible for immediately updating
those components with the new information. Owner coherence is maintained by lock-
ing the property for the duration of the update, while remote coherence is limited by the
network and processing delay incurred by the update.

Communication coherency is also important. Farm must ensure that a message is
delivered when appropriate, and from the recipient’s perspective, not before it was ac-
tually sent. As outlined in section 3.3, this is accomplished in a manner similar to the
data flow. Messages from the agents are queued for delivery during the pulse, and only
sent after the pulse has completed. The receiving meta-agent queues incoming mes-
sages, which are delivered to their final recipient when the specified delivery time has
been reached.

A more insidious form of inconsistency occurs when the meta-agents are distributed
across a heterogeneous set of machines. Because the agent’s computational effort is
measured in seconds, one group of agents may effectively be allocated more time sim-
ply because the processor they happen to reside on can perform more computations
in the same amount of time. A few strategies can be employed to compensate for this
problem. One could compute a processor-to-real time ratio for all machines in the pool,
and use that to scale the actual time allocated by individual meta-agents. In Farm, this is
accomplished by first determining a baseline performance standard, either by prespeci-
fying it or by having the simulation core to dynamically compute one from the computer
it resides on. This baseline value is then provided to the meta-agents, who dynamically
determine their individual performance metrics by computing a common benchmark.
We use the Linpack benchmark [3] to produce these performance measures. The ratio
of the baseline value to a meta-agent’s individual performance metric is used to weight
the execution time it allocates to the agents under its control.

Another strategy to address the issue of heterogeneity is to statistically remove the
problem through repeated trials where the agent population is shuffled between hosts.
A third option (clearly requiring less effort) is to simply ensure your server pool is suffi-
ciently homogeneous, or accept the performance differences as a byproduct of working
in a realistic environment. For the results presented in this paper, the experiments were
performed using a group of similarly configured workstations.



Fig. 10. The distributed sensor network domain implemented in Farm.

4 Environments

Several computational environments have been implemented using Farm, each taking
about two days to implement the environment itself, and the agents taking from a day
to a week depending on their complexity and the availability of source code. Each
environment generally consists of a driver, which instantiates and maintains the envi-
ronment, and analysis components, which generates statistics at runtime, and a set of
one or more types of agents. In addition, several generic components have been devel-
oped which may be used across all environments. These include a graphing component,
property log, and time driver.

4.1 Distributed Resource Allocation

The distributed resource allocation environment is an abstraction of the distributed sen-
sor network (DSN) problem [10]. A complete solution would reason about a range of
issues, from role assignment to low level task scheduling to multi-target data associa-
tion. The underlying problem, however, is much more straightforward. The environment
consists of a number of sensors and mobile targets, and the high level objective is to use
the sensors to track them. Each sensor has limitations on its range and usage. This then
reduces to a resource allocation problem, where the attention of the sensors must be
allocated so that all the targets are tracked.



Several plugins were created for this domain. The first was a driver, which is re-
sponsible for assigning sensor and target agents to meta-agents, and for creating and
maintaining the sensor environment. This includes determining locations for the sim-
ulated sensor nodes, updating target locations as they move, and maintaining sensor-
target observability lists. These lists were stored as properties, so that they can easily
be accessed by the individual agents. This and other data was also used by an analysis
plugin, which determined the possible and current utility produced over time, tracked
message totals, and sensor allocation conflicts, among other things. Much of the data it
uses are produced by individual agents, which are then stored as global properties. One
can see that as the system scales, this data transfer can become significant, which mo-
tivates the property storage discussion presented earlier in section 3.2. Farm’s generic
graphing plugin, seen at the bottom of Figure 10, was used to visualize some of this
data. The analysis component works by aggregating the data and producing some sort
of summary statistic at each time pulse. This statistic is also stored as a property, the
name of which can be provided to the graphing plugin at launch time so it can find and
graph the values over time. Another domain-specific visualization component, shown
at the top of Figure 10, displays the current sensor field, along with target allocations,
conflicts and negotiation patterns. This works in a manner similar to the analysis com-
ponent, aggregating data produced by individual agents with location data from the
driver to produce its image. The same data collection costs mentioned above also mo-
tivate the need for a component-based system such as Farm employs that allows one to
run both with and without potentially expensive components like these visualizers.

Our comprehensive solution to this problem is implemented as a homogeneous col-
lection of sophisticated JAF agents, which run in real time in both the Radsim simulator
and hardware. In the Farm environment there are two types of simpler agents: sensor
agents, each of which controls a single sensor, and tracking agents, each of which is re-
sponsible for tracking a single target. The driver provides the track managers with a list
of candidate sensors, i.e. those which are in range of its target, and the track manager
must determine which sensors it wants to use. The track managers must then coordinate
to resolve conflicts so all targets are tracked. The SPAM negotiation protocol [12] was
implemented to solve this problem.

This domain was the incentive behind Farm’s creation, and has shown itself to be
particularly useful in debugging and evaluating SPAM. Because Farm scales to much
greater numbers, and also eliminates most of the complicating, but ultimately tangential
factors (relative to resource allocation), development and evaluation of the protocol was
much easier in this environment than in the original detailed simulator. We were also
able to directly use almost all the code from the original JAF-based implementation,
so improvements made in the Farm environment were easily mapped back the more
realistic Radsim and hardware environments.

4.2 Graph Coloring

The well-known graph coloring domain was implemented as a means of both testing
the generality of SPAM in a new domain, and also to compare its performance against
reference protocols known to work on graph coloring. The driver in this domain was
simpler than for DSN, as it only needs to create the nodes and edges of the graph. A



Fig. 11. The graph coloring domain implemented in Farm.

domain visualizer was also written, which was used to produce the image in Figure 11.
We use the layout procedure described in [20] to produce satisfiable graphs of arbitrary
size using a defined number of colors. Currently the resulting graph is static, although
we intend to add an additional dynamic component to it in the future. A separate analy-
sis component evaluates the possible and actual number of coloring constraints, which
is then visualized using the graphing component. Three agents have been implemented
in this domain, using protocols derived from descriptions in [20]. The results of these
tests can be found in [11].

4.3 SAT

The boolean satisfiability problem, or n-SAT, is another well-studied domain. Our driver
for this environment constructs random SAT problems with a specified number of vari-
ables, clauses and clause length. It can also read and instantiate CNF formula encoded
in the DIMACS format, allowing researchers to make use of the large collections of
SAT benchmark materials available online. Individual agents correspond to the vari-
ables from the formula, which must then interact and exchange information in some
way to find a satisfying solution if one exists. As with other domains, an analysis com-
ponent was written which can monitor the progress of the search over time.

4.4 Learning Evaluation

The learning domain we developed is different than the others, in that was not intended
to produce an environment where a number of agents can work together addressing a



Fig. 12. The learning domain implemented in Farm. This shows the average results of two learn-
ing techniques being run concurrently, each with a learning population of 500 agents.

common environment. Instead, a number of individual agents learn in parallel on sep-
arate problems. Specifically, we have implemented a simple �-armed bandit problem
[18], along with several agent types instantiating different reinforcement learning tech-
niques. The purpose of this was to create an environment where a number of tests can
be run concurrently, to provide more immediate, comparative feedback as visualized
by Farm’s graphing plugin in Figure 12. In this figure we compare how the percentage
of agents performing the optimal action changes over time between two different tech-
niques, where each measurement for each technique is the average over the behavior of
500 concurrently running agents.

The driver for this domain was responsible for determining what types of learning
agents to create. As with the DSN domain, this is a potentially heterogeneous collection
agents, so allocation was performed by distributing a smaller, representative sample of
this collection to each meta-agent. As mentioned earlier in section 3.2, the learning
domain also employed a more complex analysis component, which used mobile code to
first generate aggregate statistics at each component, and only transfer a summary back
to the analysis component. These individual summary statistics were then combined to
produce the global statistic. This resulted in a dramatic savings in time and message
traffic, at the expense of a more complex implementation.

This particular domain is also differentiated by its use of the deterministic notion
of pulse time. Agent behavior is controlled so that instead of running for a certain
number of milliseconds, they are allowed only a fixed number of passes (1) through
their control loop per pulse. This allows us to ignore the computational costs of the
learning techniques (which might vary by implementation), and instead focus on their
theoretical convergence rates. This control style may be turned off to obtain real time
performance as well.

5 Related Work

Attempts have been made [13, 8] to define the set of features and characteristics that
a multi-agent simulator should posses. The topics described in these efforts are impor-
tant, in that they can help guide designers towards a comprehensive, robust solution.



Farm, however, is not intended to provide a complete simulation solution - instead it
tries to provide a relatively simple environment where agents possess only the most
germane functionality. Much of the complexity of a real environment can be either ab-
stracted away, or approximated through the use of black-box style components which
provide agents with necessary information, when the actual process of obtaining that
information is unimportant. Thus, much of the underlying modeling structures which
make other simulators unique is absent in Farm.

5.1 MACE3J

MACE3J [6], like Farm, is primarily intended to simulate large numbers of large-
grained agents. It includes mechanisms for different styles of event and messaging
control, data collection, and a lightweight agent definition model. It is also scalable,
but does so under a multiprocessor-based scheme, taking advantage of the capabili-
ties inherent in lower level system software to manage many of the inter-processes and
inter-thread issues which arise in simulation. While this method is undoubtedly more
efficient than the distributed approach we have selected, it also requires additional phys-
ical overhead in the form of an actual multi-processor machine, or a cluster of machines
tied together with appropriate software. In this sense, Farm is more closely related to
the original MACE [5], which also employed a distributed architecture.

Farm places more emphasis on the real-time aspects of agent behavior, as progress
in a scenario is driven by the passage of time, not events or messages, and the effective-
ness of an agent is affected by the duration of its computations. In contract, MACE3J’s
event driven control with synchronization points allows for more deterministic results.
In other ways the two environments are similar: Farm also supports repeatability, var-
ied communication models, transitionable agent models and data collection and display
tools. MACE3J’s support for randomized event sequences is a feature we intend to add
to Farm in the future.

5.2 SPADES

The SPADES (System for Parallel Agent Discrete Event Simulator) environment is sim-
ilar to Farm in many respects [15]. Like Farm, SPADES has a distributed architecture
where multiple agents may share one physical processor, and the actual execution time
used by individual agents is tracked. Unlike Farm, SPADES uses an event-based scheme
to monitor progress, which allows scenarios to be more easily repeatable than in Farm’s
continuous-time approach. Although Farm does offer a deterministic mode, as outlined
in Section 3.1, SPADES’ event-based approach can potentially offer a better tradeoff
between simulation granularity and the overhead incurred maintaining synchronization
across agents. The drawback of this design is the need for centralized control. Since
the engine must maintain a global view of the actions taking place in the system, this
component’s load will grow proportionally with the number of agents in the system.
Conversely, we feel that Farm’s more modular architecture and distributed state mecha-
nism avoids this bottleneck, while offering greater flexibility to the simulation designer.



5.3 Swarm

Like Farm, the Swarm [14] simulation environment is a modular domain-independent
framework. It offers the ability to probe agents’ state and beliefs, and graphically dis-
play them, similar to the logging and graphing tools provided with Farm. Fundamen-
tally, the two differ in their representation of time passing. Swarm uses a discrete event
system, where a point in time in not reached or seen until some event has been sched-
uled to take place then. Farm uses a real time approach where time passes regardless of
what events are taking place. Both techniques are valid, but serve different purposes. In
addition, Swarm agents have a different character to them, as they are generally mod-
eled as a set of rules, or responses to stimuli. Conversely, Farm agents are built more
like a conventional program, where the designer develops classes and routines to exhibit
agent behavior. Again, both approaches have their merits depending on the problem to
be addressed.

5.4 CoABS Grid

The CoABS Grid (CG) [9] is a middleware system designed to integrate a collection of
architecturally heterogeneous agents into a single consistent environment. It has many
of the characteristics of a simulation environment, although it is more robust in that the
environment and the effects of agent activities need not necessarily be simulated. CG
has some features that directly provide domain services to the agents, such as capabil-
ity registration and search, secure communications, and directory services, which in a
Farm simulation would traditionally be considered part of the agent solution. However,
in the spirit of avoiding unnecessary complexity that we have espoused, one could en-
vision, for example, a Farm directory service plugin in much the same way drivers are
used to relieve the agents of other burdens. Like Farm, CG strives to be a scalable so-
lution, has support for optional visualization and logging tools, mobile code, and fully
distributed point-to-point communication. Farm differs from CG in its tighter control
of time, specifically in that agents are allocated a particular amount of time in which
to run by the Farm core. Because CoABS agents may be legacy systems or non-native
wrapped agents this level of timing control and accountability is difficult to achieve in
that framework.

5.5 MASS

Our earlier simulation environment, the Multi-Agent System Simulator [19], is quite
different than Farm. It provides a richer, quantitative view of the world, where agent
activities and their interactions are modeled using a hierarchical task decomposition
language, consumable and non-consumable resources have constraints which can af-
fect behavior, and an agent’s beliefs may differ from objective fact. As with the earlier
example, agents are built using JAF, which itself has a fair amount of complexity. All
of these features are desirable for evaluating sophisticated agents in context, but at the
same time they can be distracting when only a subset of behaviors need analysis. In ad-
dition, the environmental models and communication mechanisms are centralized, and
the agents, while distributed, run as separate processes, so the environment as a whole



does not scale well past 40 agents or so. The DECAF [7] agent framework also has a
similar character and purpose to JAF/MASS, although it does not have a centralized
simulation environment, and it offers built-in brokering and name services which JAF
lacks. In most other respects, DECAF compares to Farm in much the same way as JAF.

5.6 Radsim

Unlike most of the other environments mentioned here, Radsim is not a general sim-
ulation framework. Instead it is a real-time, domain-specific simulator designed to ac-
curately model a collection of radar platforms as they attempt to track targets moving
through space[10]. We mention it here because it represents an extreme case in the
spectrum of simulators, where the actors in the system must recognize and handle vir-
tually every aspect of a problem with a high level of realism. This complexity is critical
for testing comprehensive solutions, particularly if the actual environment the solution
will run in is otherwise physically or practically unavailable. However, this same com-
plexity can prevent the environment from scaling, and hinder development of critical
subsystems. We feel this argues for a heterogeneous approach, where targeted, scalable
simulation results, such as Farm can provide, coupled with the type of detailed exper-
iments that can be done in a complex environment such as Radsim, will in the end
produce a higher quality solution.

5.7 VMT

The Vehicle Monitoring Testbed (VMT) was one of the first distributed simulation en-
vironments designed to support distributed intelligent processing [4]. It is interesting to
note that the same capabilities which we currently address in Farm, such as the desire
to scale, overcoming resource bottlenecks, and facilitating distributed control, were the
same motivating issues in a system designed 20 years ago. Although the VMT environ-
ment has a more specialized purpose, it still shares several features with Farm, including
a similar messaging scheme, a notion of global time and a synchronization mechanism
ensuring distributed processes receive equal amounts of time.

6 Summary

Farm is a multi-agent simulation environment designed to handle large scale simula-
tions and custom designed analysis, visualization and content while tracking agent ac-
tivity in simulated real time. The main simulation entity acts as a hub, by accepting and
managing connections from distributed plugins, providing execution prompts to those
plugins, and maintaining a common, globally accessible data repository. Agents in the
system are implemented as threads, but are autonomous in character, require commu-
nication to interact, and do not share memory. These agents are organized in groups
on distributed processors, where their real-time CPU usage is monitored and rationed
in accordance with the simulated environment’s design. By distributing both the agents
and analysis tools in this fashion, Farm is able to exploit available computing power



to handle very large environments, while retaining the ability to effectively model real
world performance.

Issues relating to scale and coherency are closely tied to the distributed nature of
the system. On one hand, poor data and computational distribution can lead to commu-
nication and processing bottlenecks. On the other, because agents are distributed across
processors, care must be take to ensure temporal, data and communication consistency.
Different strategies for managing these issues were covered.

The environment so far has been used to create scenarios containing more than 5000
individual agents. Several domains have also been implemented, including a distributed
sensor network, graph coloring and SAT. Further information on Farm can be found at:
http://mas.cs.umass.edu/research/farm

References

1. S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast. In
Proceedings of the 2002 conference on Applications, technologies, architectures, and proto-
cols for computer communications, pages 205–217. ACM Press, 2002.

2. P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. J. Shenoy. Adaptive push-
pull: disseminating dynamic web data. In World Wide Web, pages 265–274, 2001.

3. J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK Users’ Guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1979.

4. E. Durfee, D. Corkill, and V. Lesser. Distributing a Distributed Problem Solving Network
Simulator. In Proceedings of the Fifth Real-time Systems Symposium, pages 237–246, De-
cember 1984.

5. L. Gasser, C. Braganza, and N. Herman. MACE: a flexible testbed for distributed ai research.
In Distributed Artificial Intelligence, M.N. Huhns, ed. Pitman/Morgan-Kaufmann, 1987.

6. L. Gasser and K. Kakugawa. MACE3J: fast flexible distributed simulation of large, large-
grain multi-agent systems. In Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems, pages 745–752. ACM Press, 2002.

7. J. R. Graham, K. S. Decker, and M. Mersic. DECAF - a flexible multi agent system archi-
tecture. Autonomous Agents and Multi-Agent Systems, 2003.

8. S. Hanks, M. E. Pollack, and P. R. Cohen. Benchmarks, test beds, controlled experimenta-
tion, and the design of agent architectures. AI Magazine, 14(4):17–42, Winter 1993.

9. M. L. Kahn and C. D. T. Cicalese. CoABS grid scalability experiments. In Proceedings
of the Second International Workshop on Infrastructure for Scalable Multi-Agent Systems at
Autonomous Agents, May 2001.

10. V. Lesser, C. Ortiz, and M. Tambe. Distributed Sensor Networks: A multiagent perspective.
Kluwer Publishers, 2003.

11. R. Mailler and V. Lesser. A Mediation Based Protocol for Distributed Constraint Satisfac-
tion. The Fourth International Workshop on Distributed Constraint Reasoning, pages 49–58,
August 2003.

12. R. Mailler, R. Vincent, V. Lesser, J. Shen, and T. Middlekoop. Soft real-time, cooperative
negotiation for distributed resource allocation. In Procceedings of the 2001 AAAI Fall Sym-
posium on Negotiation, 2001.

13. M. G. Marietto, N. David, J. S. Sichman, and H. Coelho. Requirements analysis of multi-
agent-based simulation platforms: State of the art and new prospects, 2002.

14. N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm simulation system: A
toolkit for building multi-agent simulations. Technical report, Sante Fe Institute, 1996.



15. P. Riley and G. Riley. SPADES — a distributed agent simulation environment with software-
in-the-loop execution. In S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, editors,
Proceedings of the 2003 Winter Simulation Conference, December 2003.

16. P. Rodriguez, C. Spanner, and E. W. Biersack. Web caching architectures: Hierarchical and
distributed caching. In Proceedings of the 4th International Web Caching Workshop, 1999.

17. S. Shah, A. Bernard, V. Sharma, K. Ramamritham, and P. Shenoy. Maintaining temporal
coherency of cooperating dynamic data repositories. Computer Science Technical Report
TR01-52, University of Massachusetts at Amherst, November 2001.

18. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998. A Bradford Book.

19. R. Vincent, B. Horling, and V. Lesser. An Agent Infrastructure to Build and Evaluate Multi-
Agent Systems: The Java Agent Framework and Multi-Agent System Simulator. Lecture
Notes in Artificial Intelligence: Infrastructure for Agents, Multi-Agent Systems, and Scalable
Multi-Agent Systems., 1887, January 2001.

20. M. Yokoo. Distributed Constraint Satisfaction. Springer Series on Agent Technology.
Springer, 1998.


