Efficient Ordering and Parameterization of Multi-Linked
Negotiation ~

Xiaoqin Zhang

Computer and Information

Victor Lesser
Computer Science

Sherief Abdallah
Computer Science

Science Department Department Department
University of Massachusetts at University of Massachusetts at University of Massachusetts at
Dartmouth Ambherst Ambherst

x2zhang@umassd.edu

ABSTRACT

Multi-linked negotiation describes a situation where one agent
needs to negotiate with multiple agents about different is-
sues (tasks, conflicts, or resource requirements), and the
negotiation over one issue influences the negotiations over
other issues. In this paper, we present a formalized model of
the multi-linked negotiation problem. Based on this model,
two search algorithms are described for finding the best or-
dering of negotiation issues and their parameters. Experi-
mental work is presented which shows that this management
technique we developed for multi-linked negotiation leads to
improved performance.

General Terms
Keywords
1. INTRODUCTION

Multi-linked negotiation deals with multiple negotiation
issues when these issues are interconnected. In a multi-
task, resource sharing environment, an agent may need to
deal with multiple related negotiation issues including: tasks
contracted to other agents, tasks requested by other agents,
external resource requirements for local activities and inter-
relationships among activities distributed among multiple
agents.

*This material is based upon work supported by the Na-
tional Science Foundation under Grant No.IIS-9812755,
DMI-0122173 and the Air Force Research Laboratory /IFTD
and the Defense Advanced Research Projects Agency under
Contract F30602-99-2-0525. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, ei-
ther expressed or implied, of the Defense Advanced Research
Projects Agency, Air Force Research Laboratory/IFTD, Na-
tional Science Foundation, or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

lesser@cs.umass.edu

shario@cs.umass.edu

Consumer Agent Consumer Agent \IICfJnsumer Agent
[:D dliver_Computer Purchase_Computer
min

Deliver_Prod u@ |

Transporter Agent
L 4 [Produce_Computer]m[Deliver_Computer]
~ process—time: 6

mIR

Get_Software enables

process—time: 3

Purchase_Parts
Get_Hardware|
— l enables

Install_Software

process—time: 3

Get_Hardware|
process—time: 7

Hardware Producer Agent Computer Producer Agent

Figure 1: A Supply Chain Scenario

Figure 1 describes a supply chain example'. Consumer
Agent generates orders such as Purchase_Computer, Pur-
chase_Parts and Deliver_Product for different agents includ-
ing Computer Producer Agent, Hardware Producer
Agent and Transport Agent. The agents negotiate about
these orders. The contractor agent (the agent who performs
the task for another agent and gets rewarded for successful
completion of the task) and the contractee agent (the agent
who has a task that needs to be performed by another agent
and pays the reward to the other agent) negotiate about the
task and a contract is signed (a commitment is built and con-
firmed) if an agreement is reached during the negotiation.
The contract specifies the start time, the finish time, the
reward of the task, and other attributes. If the contractor
agent can not perform the task as it promised in the contract
(i.e. the task could not finish by the promised finish time),
it pays a decommitment penalty to the contractee agent ac-
cording to the contract. If the contractee agent needs to
cancel the contract after it has been confirmed, it needs to
pay a decommitment penalty to the contractor agent.

The potential relationships among multiple negotiation
issues can be classified as two types. One type of relation-
ship is the directly-linked relationship: issue 2 affects issue
1 directly because issue 2 is a necessary resource (or a sub-
task) of issue 1. The characteristics (such as cost, duration
and quality) of issue 2 directly affect the characteristics of
issue 1. For example, as pictured in Figure 1, Computer

! All task plans shown in this paper use the TAEMS language
[1], which is also used in our implementation and experi-
ments.

AND AND

B C E

Figure 3: Interrelationships among negotiation is-
sues

A B [} A B- C A\B/C
D E D———=E D E
Ordering #1 Ordering #2 Ordering #3

Figure 4: Three possible negotiation orderings

Producer Agent receives task Purchase_Computer from Con-
sumer Agent, and decides if it should accept this task and
if it does, what the promised finish time of the task should
be. The earlier the task is finished, the higher the reward
Computer Producer Agent can get. In order to accomplish
task Produce-Computer, Computer Producer Agent needs to
generate an external request for hardware (Get_Hardware),
and also needs to deliver the computer (Deliver-Computer)
through a transport agent. The negotiation on the task Pur-
chase_Computer is directly linked to the negotiation on the
two tasks: Get_Hardware and Deliver_Computer.

Another type of relationship is the indirectly-linked rela-
tionship: issue 1 relates to issue 2 because they compete
for use of a common resource. For example, as shown in
Figure 2, besides the task Purchase-Computer-A, Com-
puter Producer Agent has another contract on task Pur-
chase_Computer_B. Because of the limited capability of Com-
puter Producer Agent, when task Purchase- Computer-A will
be performed affects when task Purchase_Computer_B can
be performed. The negotiation on task Purchase-Computer-A

and the negotiation on task Purchase.Computer_B are indirectly-

linked. Figure 3 shows the relationships among the five is-
sues for Computer Producer Agent: issue A is directly re-
lated to issue B and C, and issue D is directly related to
issue E.

How can the agent deal with these multiple related ne-
gotiation issues? Two questions need to be answered here.
The first question is in what order should the negotiation
on each issue be performed. How should the agent orders
multiple related negotiations? Should all the negotiations
be performed concurrently or in sequence? If in sequence,
in what sequence? There are potentially many other choices
to order negotiations, such as doing some of them in par-
allel and some of them in sequence. Figure 4 shows three
possible negotiation orderings for the five negotiation issues.
Ordering #1 means all five issues are negotiated in parallel;
ordering #2 means these five issues are negotiated one by
one, first A, then B, then C, then D, and finally E; order-
ing #3 means that the negotiation on A is performed before
the negotiation on B and C, and the negotiation on D is
performed before the negotiation on E.

Why is the order of negotiation important? First, because
each negotiation issue has a negotiation deadline, set by the
contractee agent, if the contractor agent can not reply to a
task proposal before the negotiation deadline, the negotia-

tion fails. One reason for missing the negotiation deadline
is that the contractor agent is busy on other negotiations
before it decides to perform this negotiation. Suppose the
negotiation deadline on A is 3 and the negotiations on B
and C both take 4 time units, if Computer Producer Agent
negotiates on B and C before it replies to Consumer Agent
about A, it will lose the contract of A. However, if Computer
Producer Agent first replies to Consumer Agent before sign-
ing contracts on B and C, there is the risk that the contracts
on B and C may not be available or they don’t fit with the
contract on A, hence Computer Producer Agent needs to
pay a decommitment penalty on contract A. How should
Computer Producer Agent choose the appropriate negoti-
ation ordering? Secondly, even if the negotiation is com-
pleted before its deadline, when the negotiation is started
affects the outcome of the negotiation. For example, when
there are several potential contractor agents, the earlier a
response to negotiation is received, the more likely the offer
is accepted. Likewise, the earlier the contractee agent ini-
tiates the negotiation, the more likely the contractor agent
is to accept the proposal. Thirdly, the earlier a negotiation
is started, the larger the space for the agent to find a fea-
sible solution is. For instance, given that the deadline for
task Get_Hardware_A is 30, if the negotiation on this task
finishes at time 10, there are 20 time units left for Hard-
ware Producer Agent to arrange this task; if the negotiation
finishes at time 20, Hardware Producer Agent only has 10
time units to execute this task. So the order of negotiation
directly affects the outcome of the negotiation.

The second question is how the agent assigns values for
those attributes (also referred as “features”) in negotiation
to minimize the conflicts and maximize the utility. There
are several features that the agent needs to negotiate over for
each issue. For a task proposal, the contractee agent needs
to find the earliest start time and deadline to request for the
task, how much reward to pay for this task, the early reward
rate, the decommitment penalty, etc. The contractor agent
needs to decide the promised finish time. Some of these fea-
tures are related to the features of other issues. For exam-
ple, the deadline proposed for task Get_Hardware_A affects
the earliest start time of task Deliver-Computer_A, and the
deadline of task Deliver_Computer_A affects the promised
finish time for task Purchase-Computer_A. The agent needs
to find appropriate values for these features to avoid con-
flicts among them and to make sure there is a feasible local
schedule to accommodate all the local tasks and commit-
ments. Furthermore, the values of these features influence
the outcomes of the negotiation and the agent’s local utility.
For instance, the greater the reward is, the greater the likeli-
hood that the task will be accepted by the contractor agent;
however, the contractee agent’s local utility decreases as the
reward it pays to the contractor agent increases. Also, the
later the deadline for task Get_Hardware_A is, the greater
the possibility that the task will be accepted by Hardware
Producer Agent; however, it leaves less freedom for task
Deliver_Computer_A, and it also makes the promised finish
time for task Purchase_Computer_A later, hence reducing
the early reward Computer Producer Agent may get.

A good negotiation strategy for a multi-linked negotia-
tion problem should provide the agent with an appropriate
negotiation order of all issues and a feature assignment (as-
signs a value to every attribute that needs to be decided in

negotiation with Consumer

S

| Get_Hardware_A |
=g
B process—time:7

i

~“énables

process—time:3

| Get_Hardware_B \
--3

=~ nonlocal task
b = (> local task
negotiation with Hardware Producer est: earliest start time
dl: deadline

Computer Producer Agent
est:12

Purchase_Computer B | 1.

> total-process—time:20
min

] enables »[shipping_COmpU‘e’—B]

process—time:10

process—time:3 en\a e
Install_Software_B|

enables process—time:3

process—time:7
'E

Figure 2: Computer

this problem) for those attributes under negotiation®. Using
such a negotiation strategy, the agent can avoid the conflicts
among negotiation issues and optimize its utility achieve-
ment. As the experimental results that will be described
in Section 5 shown, there can be significantly better per-
formance when optimal sequence among negotiation issues
and feature assignment are chosen for the multi-linked ne-
gotiation problem as the example shown in Figure 2. Pre-
viously, Zhang and Lesser[4] have presented a partial order
schedule as a basic reasoning tool for the agent to deal with
multi-linked negotiation, which enables the agent to reason
about the time-related constraints on each negotiation issue
and manage the flexibility. However, this approach does not
provide a general solution for how an agent should perform
multi-linked negotiations.

To our knowledge, there is no other work that has ad-
dressed the directly-linked relationship in the negotiation
process. There is some work that takes into account the
indirectly-linked relationship among multiple negotiation is-
sues such as the distributed meeting scheduling [?] problem
and the distributed resource allocation problem [?]. How-
ever, those problems are different from our problem in the
following ways: the negotiation is cooperative by nature and
the agent can altruistically withdraw its request to help oth-
ers succeed; the tasks are simple, no need for subcontracting;
no time pressure on negotiation and no penalty for decom-
mitment. The negotiation problem presented in this paper
is much more complicate.

In this paper, we introduce a decision-making process that
enables an agent to manage the multi-linked negotiation is-
sues and choose the appropriate negotiation strategy based
on the knowledge about each negotiation issue and the in-

2The assigned values provide consistent ranges for those at-
tributes under negotiation. For a given negotiation solu-
tion, the feature assignment specifies a feasible range or a
limit for a feature, such as the feasible range [9, 36] for task
Get_Hardware_A, or at most 8 units of currency transferred
for task Get_Hardware_A. The agent can perform a single-
step negotiation using this feature assignment as guide, and
find the negotiation result quickly. Alternatively, the agent
can perform a multi-step negotiation within the limit pro-
vided by the value assignment in the negotiation strategy.
This detailed negotiation process on a single issue is not dis-
cussed in this paper, however, related research work can be
found in [5].

Producer Agent’s Tasks

terrelationships among them. The remainder of this paper
is structured in the following manner. Section 2 presents
a formalized model of the multi-linked negotiation prob-
lem. Section 3 introduces two search algorithms for finding
the appropriate negotiation strategy based on the formal-
ized model. Section 4 details how the algorithms and the
decision-making process work for a multi-linked negotiation
problem using an example. Section 5 reports the experimen-
tal work to evaluate this approach, and Section 6 presents
the major conclusions and the areas of further work.

2. MODEL OF THE PROBLEM

In this section, we introduce a formalized model of the
multi-linked negotiation problem and its solution using the
example in Figure 2.

2.1 Definition of the Problem

A multi-linked negotiation problem occurs when an agent
has multiple negotiation issues that are interrelated.

DEFINITION 2.1. A multi-linked negotiation problem
1s defined as an undirected graph (more specifically, a forest
as a set of rooted trees): M = (V,E), where V. = {v} is
a finite set of negotiation issues, and E = {(u,v)} is a set
of binary relations on V. (u,v) € E denotes that the ne-
gotiation on u and the negotiation on v are directly-linked.
Each negotiation issue v;(v; € V') is associated with a set of
attributes A; = {ai;}. Each attribute a;; either already has
been determined (already has a value) or needs to be decided
(to be assigned to a value). The relationships among the
negotiation issues are described by a forest, a set of rooted
trees {T3}. There is a relation operator associated with ev-
ery non-leaf issue v on the tree (denoted as p(v)), which
describes the relationship between this issue v and its chil-
dren. This relation operator has two possible values: AND
and OR.

For example, Figure 3 shows the model of the multi-linked
negotiation problem (described in Figure 2) for Computer
Producer Agent, the problem includes five issues.

A negotiation issue v may be a task to be allocated or
a resource to be acquired through negotiation. From an
agent’s viewpoint, there are two types of negotiation issues:

1. Incoming negotiation issue: A task proposed by an-
other agent. For example, issue A (Purchase_Computer_A)

and D (Purchase-Computer_B) in Figure 2 are incoming
negotiation issues for Computer Producer Agent.

2. Outgoing negotiation issue: A task needed to be sub-
contracted to another agent, or a resource requested for
a local task. For example, issue B (Get_Hardware_A), C
(Deliver_-Computer_A) and E (Get_Hardware_B) in Figure
2 are outgoing negotiation issues for Computer Producer
Agent.

DEFINITION 2.2. A negotiation issue v is successful (de-
noted as S(v)) if and only if a commitment has been estab-
lished and confirmed for this issue by those agents which are
involved in this negotiation.

DEeFINITION 2.3. A leaf node v is task-level successful
(denoted as TS(v)) if and only if v is successful (S(v) =
true); A non-leaf node v is task-level successful (denoted
as TS(v)) if and only if the following conditions are fulfilled:

e v is successful (S(v) = true);

o all its children are task-level successful if p(v) = AND;
or at least one of its children is task-level successful, if
p(v) = OR.

Asin Figure 3, issue A is task-level successful is and only if
the negotiation on A is successful, and the negotiations on B
and C are also successful. In this case, Computer Producer
Agent can actually perform task Purchase-Computer_A suc-
cessfully.

For each negotiation issue v;, ps(vi) denotes the success
probability, the probability that v; is successful (p(S(v;) =
true)). There is a function ¢; mapping the values of the at-
tribute a;j, j = 1,2, ..., k, to ps(vs): ps(vi) = Ci(air, asz, ..., air)-

B(v;) denotes the decommitment penalty [2] of v;. If v;
is successful (S(v;) = true), but vy, isn’t task-level successful
(T'S(vi) = false), where vy is the root of the tree that v;
belongs to (denoted as vx = root(v;)), the utility of the
agent decreases by the amount of 3(v;) (it represents the
penalty paid to the other agent which is involved in the
negotiation of issue v;.) There is a function 7; mapping the
values of the attribute a;;, j = 1,2,...,m, to B(v:): B(vi) =
Ni (@1, @iz, ..., Gim)-

If v; is a root of a tree, then v(v;) denotes the task-level
successful reward of v;. The agent’s utility increases by
the amount of v(v;) when v; is task-level successful. There
is a function 6; mapping the values of the attribute a;j,
7=1,2,...,m, to y(vi): v(vi) = Oi(ai1, aizy ..., Gim)-

The attributes of a negotiation issue are domain depen-
dent. They are specified according to the application do-
main. The above functions (;, 7; and 6; are also defined ac-
cording to the application domain. The following attributes
need to be considered in this supply chain example:

1. time range (st,dl): the time range associated with an issue
contains the start time (st) and the deadline (dl). If the
issue is a task in negotiation, this task can only be per-
formed during this range (st,dl) to produce a valid result.
The larger the time range is, the higher the probability of
success this negotiation issue has, since it is easier for the
other agent to arrange and schedule this task. For an in-
coming issue, this range is already determined by the other
agent who proposes this request; for an outgoing issue, the
agent needs to decide what time range to propose on this
issue. The agent needs to make sure this time range is con-
sistent with all other time constraints of other issues, so it
can find a feasible local schedule based on the commitment
with this time range.

2. duration (d): if the issue is a task in negotiation, duration
d is the process time requested to accomplish this task; if
the issue is a resource in negotiation, duration d is the time
needed for the usage of the resource.

3. flexibility (f): the flexibility is defined based on the time

range and the duration: f = #=5t=¢ The flexibility di-
rectly affects the success probability. For a negotiation issue
with negative flexibility, the success probability is 0.

4. finish time (ft): the promised finish time for the task. For
an incoming issue, the agent needs to decide the promised
finish time (which must be no later than deadline dl the
other agent requested) for this proposed task when it de-
cides to accept this task.

5. regular reward (r): when an incoming task v is task-level
successful, the agent’s local utility increases by the amount
of r(v).

6. early reward rate (e): for a task in negotiation, if the con-
tractee agent can finish the task earlier than the deadline
request, it gets extra reward e * (dl — ft).

The agent needs to find out how these features affect

the task-level successful reward and the success probabil-
ity. These relationships can be described as functions €,
¢ according to the agent’s knowledge of each negotiation
issue. In this supply chain example, for an incoming ne-
gotiation issue (such as A, D), the attribute needed to be
decided is the promised finish time f#; the task-level success-
ful reward depends on the promised finish time ft: vy(v) =
r(v)+e(v)*(dl(v)— ft(v)). For an outgoing negotiation issue
(such as B, C, and E), the attributes needed to be decided
are the start time (st) and the deadline (dl). the success
probability depends on the flexibility f(v), actually the time
range (st(v),dl(v)):
Ps(v) = pps(v) * (2/7) * (arctan(f(v) +¢))) 3. pps is the ba-
sic success probability of this issue v when the flexibility
f(v) is very large. cis a constant parameter used to adjust
the relationship.

Besides those domain dependent attributes, there are some
common attributes introduced here:

1. negotiation duration (§(v;)): the time needed for the
negotiation on v; to get a result, either success or fail-
ure.

2. negotiation start time (a(v;)): the start time of the
negotiation on v;. a(v;) is an attribute that needs to
be decided by the agent.

3. negotiation deadline (e(v;)): the negotiation on v; needs
to be finished before this deadline e(v;). The negoti-
ation is no longer valid after time e(v;), which is the
same as a failure outcome of this negotiation. Fur-
thermore, even if the agent starts the negotiation be-
fore €(v;), it is not necessarily true that all times before
€(v;) are equally good. Usually, an earlier started nego-
tiation has a better chance to succeed for two reasons:
the other party considers this issue before other later
arriving issues, and this issue has a bigger time range
for negotiation. This relationship is described by the
function (; that takes a(v;) as one of its parameters.

2.2 Description of the Solution

Given this multi-linked negotiation problem M = (V, E),
an agent needs to make a decision about how the negoti-
ation over these issues should be performed. The decision

30Obviously this function could be affected by the meta-level
information from the other agent.

concerns the negotiation ordering and the feature assign-
ment.

DEFINITION 2.4. A negotiation ordering ¢ is a directed
acyclic graph (DAG), ¢ = (V,Ey). Ife: (vi,v;) € Ey, then
the negotiation on v; can only start after the negotiation on
v; has been completed. e : (vi,v;) is being referred to as
a partial order relationship (POR), e. A negotiation
ordering can be represented as a set of PORs, {e}.

DEFINITION 2.5. A negotiation schedule N'S(¢) contains
a set of negotiation issues {v;}. Each issue v; has its negoti-
ation start time a(vi)g and its negotiation finish time £(vi)y
that is calculated based on its negotiation duration 6(v;) and
its negotiation start time a(v;)g.

Using the topological sorting algorithm, a negotiation sched-
ule N'S(¢) can be generated from a negotiation ordering ¢
assuming all negotiation issues are started at their earliest
possible times 7 for a set of negotiation issues, the nego-
tiation schedule generated from a negotiation ordering is
unique. As shown in Figure 4, suppose the negotiation start
time 7 = 0, and the negotiation duration on each issue is the
same d(v;) = 5, then the following negotiation schedule is
generated for negotiation ordering #3 in Figure 4 according
to the assumption that every negotiation issue starts at it
earliest possible time:

A[0, 5]B[5, 10]C[5, 10]DJ0, 5] E[5, 10]

DEFINITION 2.6. A feature assignment ¢ is a mapping
function that assigns a value p;; to each attribute a;; that
needs to be decided in the negotiation. For those attributes
that already have been decided, value p;; is the decided value.

DEFINITION 2.7. A feature assignment ¢ is valid if given
the assigned values of those attributes, there exists at least
one feasible local schedule for all tasks and negotiation is-
sues. It is assumed there is a function that can test if a
feature assignment ¢ is valid; this function is domain de-
pendent.

DEFINITION 2.8. A negotiation strategy (¢,) is a com-
bination of a negotiation ordering ¢ and a valid feature as-
signment @.

The evaluation of a negotiation strategy is based on the
expected task-level successful rewards and decommitment
penalties given all possible negotiation outcomes for each
negotiation issue. A negotiation issue has two possible out-
comes: success and failure.

DEFINITION 2.9. A negotiation outcome x for a set of
negotiation issues {v;},(j = 1,...,n) is a set of numbers
{0;}(j = 1,...,m),0; € {0,1}. 0; = 1 means v; is success-
ful, oj = 0 means v; fails. There are a total of 2" different
outcomes for m megotiation issues, demoted as X1, X2,..-X2m -

DEFINITION 2.10. The expected value of a negotiation strat-

egy (P, p), denoted as EV(d,), is defined as: EV(d,p) =

iy P(xis #) * (R(xi, #) + C(xi, 6, #))
P(xi,) denotes the probability of the outcome x; given
the feature assignment .

P(xi,¢) = I pij (#)
s(v5), (ps(v5) = ¢ ifoj€xi=1
mo={ P T e

R(xi,p) denotes the agent’s utility increase given the out-
come xi and the feature assignment .

R(xi,) = 225 v(vi) = 32,6 ()
vj 1s a root of a tree and vj is task-level successful (T'S(v;) =
true) according to the outcome X;.

C(xi, ¢, p)) denotes the decommitment penalty according
to the outcome X;, the negotiation ordering ¢ and the feature
assignment .

Clxi, b)) = 22; B(vj) = 32, mi(¥)
v; represents every negotiation issue that fulfills all the fol-
lowing conditions:

1. v; is successful according to x;;

2. the root of the tree that v; belongs to isn’t task-level suc-
cessful according to x;;

3. according to the negotiation ordering ¢, there is no such
issue vy existing that fulfills all the following conditions:

(a) vk, and v; belong to the same tree;
(b) vk gets a failure outcome according to the outcome

Xis

(c) v, makes it impossible for root(v;) to be task-level
successful;

(d) the negotiation finish time of vy (e(vg)g) is no later
than the negotiation start time of v; (a(vj)e) accord-
ing to the negotiation ordering ¢.

3. DESCRIPTION OF THE ALGORITHM

Based on the above definition, we present two search al-
gorithms that find a (nearly) optimal negotiation strategy
for a multi-linked negotiation problem M = (V, E).

3.1 Complete Search

ALGORITHM 3.1. Find the best negotiation strategy.
Input: M = (V, E), the start time for negotiation 7, a set
of valid feature assignments w = {¢or}, k=1,...,m.

The complete search algorithm evaluates each pair of negoti-
ation ordering and valid feature assignment EV(¢i, pr), then
return the best one.

If the set of valid feature assignments is a complete set
of all possible valid feature assignments, Algorithm 3.1 is
guaranteed to find the best negotiation strategy. However,
when the attributes have continuous value ranges, it is im-
possible to find all possible valid feature assignments. We
use a depth-first search (DFS) algorithm that searches over
the entire value space for all undecided attributes by pre-
defined search step size and finds a set of valid feature as-
signments[3].

3.2 Heuristic Search

The exponential complexity of algorithm 3.1 prevents it
from being used for real-time applications when the number
of negotiation issues and the number of valid feature assign-
ments are large; hence a heuristic search algorithm has been
developed. The search for the optimal negotiation strategy
includes two parts. One is to find the optimal negotiation
schedule; the other one is to find the optimal feature as-
signment for a given negotiation schedule. The search for
the optimal negotiation schedule (See Appendix) is based
on the simulated annealing idea. Given a negotiation or-
dering ¢, randomly pick a POR e, if e € Ey, remove it
from Ey4; otherwise add it into E4. A new negotiation or-
dering ¢new is now generated. If the negotiation schedule
N8 (Prew) is better than N'S(¢), move to Pnew; otherwise,
move to ¢new With some probability less than 1. This prob-
ability decreases exponentially with the “badness” of this
move. Three heuristics have been added to this simulated
annealing process:

Table 1: Performance of heuristic search algorithm
(N.I.: number of negotiation issues; N.F.: Number of
feature assignments; Quality: the quality of the approach
found by the heuristic search compared to the best ap-
proach found by the complete search (with quality of
1.0); C.S.: the number of search steps of the complete
search. H.S.: the number of search steps of the heuris-
tic search; Ratio: the ratio of heuristic search steps to
complete search steps. N.S.: Number of data samples)

[NIL]| NF. [Quality| CS. [HS.] Ratio | N.S. |
3 | [0,50) | 0.982 | 336 | 520 | L.547 | 89
[50, 100) | 1.000 | 832 | 590 | 0.709 | 3
5 | [0,50) | 1.000 | 1750 | 1067 | L.119 | 48
[50, 100) | 0.998 | 3861 | 1766 | 0.457 | 6
6 [[0,50) [1.000 [9353 | 1869 | 0.200 | 43
[50, 100) | 0.998 | 10502 | 1734 | 0.089 | 111
100, 150) | 0.998 | 31086 | 1674 | 0.054 | 123
150, 200) | 0.996 | 44058 | 1674 | 0.038 | 108
200, 250) | 0.095 | 57253 | 1692 | 0.030 | 88
250, 300) | 0.994 | 70292 | 1670 | 0.024 | 57
300, 350) | 0.997 | 82736 | 1638 | 0.020 | 46
350, 400) | 0.995 | 95213 | 1644 | 0.017 | 28
400, 450) | 0.994 | 108185 | 1662 | 0.015 | 25
450, 500) | 0.998 | 121479 | 1667 | 0.014 | 17

1. Record the best negotiation schedule so far found. When
the search process ends, return the best negotiation sched-
ule ever found rather than the current one.

2. Instead of randomly deciding whether to add a POR or
remove a POR, use a parameter (add_por_probability) to
control the probability of the operation “add” or “remove”.

3. Instead of completely randomly choosing a POR to change
from current negotiation ordering, evaluate every POR e ac-
cording to how the value of the negotiation schedule changes
by adding this POR e to an empty POR set. The proba-
bility of adding POR e to the current POR set or removing
POR e from the current POR set depends on this evalu-
ation. A POR e with a higher positive evaluation has a
higher probability of being added, and has a lower proba-
bility of being removed.

The search for the best feature assignment (See Appendix)
is based on a hill climbing approach. Randomly pick another
feature assignment . If it is better than current one, move
to . After considering the characteristics of this problem,
the following heuristics have been added to this search pro-
cess:

1. According to the generation process, the change of those
valid feature assignments is continuous. Based on this ob-
servation, a number of sample points with equal distance
(the distance is adjustable, denoted as sample_step) in be-
tween can be selected from all the valid feature assignments
and evaluated. Hill climbing search then can be performed
for each sample point.

2. Given current chosen feature assignment, the possible oper-
ations include: moving to left and moving to right. If there
is a better selection than current one, move to the better
selection; otherwise the search stops and a local maxima is
found.

3. Compare all local maxima and return the best one.

Experiments are performed to test how good this heuris-
tic algorithm works. In these experiments, the following val-

c
[10, 31] ﬁnsta\ |_Software A]9[Deliver_Computer_A]

B [17,34]

Get_Hardware A

[10,31)

[20, 40]

A Purchase_Computer_A finish at time 40

Get_Software B
[12, 37] Install_Software B H%ipp\ ngﬁcumputerfB]
E [19, 40] [22,50]

Get_Hardware B

[12,37]

D Purchase_Computer_B finish at time 50

Figure 5: Partial order schedule

ues were assigned to the parameters: add_por_probability =
0.55, TEMP_MAX =5 TEMP_STEP = 0.1; sample_step =
10, search_limit = 10°. Table 1 shows the performance of
this heuristic search algorithm. The quality of the negotia-
tion strategy found is very close to the best strategy found
by the complete search. This heuristic search saves a large
amount search effort compared to the complete search when
the number of negotiation issues and the number of possi-
ble feature increase. The heuristic search spends more effort
than the complete search when the search space is very small
(with a few issues and a few of feature assignments). This
problem can be fixed by dynamically choosing the values of
the search parameters according to the size of current search
space, instead of using the fixed values as we did in these
experiments.

4. EXAMPLE

In this section, we demonstrate how the definition and the
algorithm work on the supply chain examples in Figure 2.
Figure 3 shows the relationships among the five issues for
Computer Producer Agent.

For every attribute that needs to be decided: start time
(st), deadline (dl) and the promised finish time (ft), the
agent can find its maximum possible range using the partial
order schedule[4] as shown in Figure 5. The agent searches
over the entire possible value space, and use the partial order
schedule to test if a feature assignment is valid. A set of valid
feature assignments is found and sent to Algorithm 3.1 to
find the best negotiation strategy.

To make the output easier to understand, only issues A,
B and C are considered in the following example. Table
2 shows the output of Algorithm 3.1 on the example in
Figure 3 given following parameters:regular reward r(A) =
19;negotiation duration d(A) = 3, §(B) = 4, §(C) = 4;
Poa(B) = 0.95; pa(B) = pus (B)+(2/m)+(arctan(f (B)+2.5)));
Pos (C) = 0.99; p.(C) = pue (C) * (2/7) * (arctan(£ (C) +5))).

The different constant parameters for ps;(B) and ps(C)
specify that issue C has a higher success probability than
issue B given the same flexibility. The following parameters
are randomly generated: the success probability of A, ps(A);
negotiation deadline € (¢(A) = e(B) = €(C)); early reward
rate e(A); decommitment penalty 3(A4), 3(B), and B(C).

In both case 1 and case 2, the negotiation deadline e =6
is used, so the valid negotiation ordering has the three ne-
gotiation issues performed in parallel. In case 2, issue A has
a higher earlier reward rate e(A4), and all issues have lower
decommitment penalties 5 than in case 1, so the negotiation

Table 2: Examples of negotiation strategies

case | Issue success negotiation | early reward | decommit | Schedule | dl — ft e(A)x flexibility success
v probability deadline rate penalty (dl — ft) f(v) probability
ps(4) € e(4) ps(v)
#1 A 0.9 6 0.012 22.15 AJ0-3 0 0 0.9
B 6 1.329 B[0-4 3.0 0.8412
C 6 1.329 CJ0-4 0.833 0.8829
#2 A 0.92 6 0.189 1.946 A[0-3 21 3.964 0.92
B 6 0.117 B[0-4 1.0 0.7817
C 6 0.117 C[0-4 0.5 0.8766
#3 A 0.19 9 0.117 16.52 AJ0-3 0 0 0.19
B 9 0.991 B[3-7 3.0 0.8412
C 9 0.991 C[3-7 0.667 0.8799
#4 A 0.64 9 0.006 16.56 Al4-7 0 0 0.64
B 9 0.993 B[0-4 2.428 0.8289
C 9 0.993 C[0-4 0.667 0.8799
#5 A 0.15 13 0.043 17.68 AJ0-3 0 0 0.15
B 13 1.060 B[3-7 2.428 0.8289
C 13 1.060 C[7-11] 0.833 0.8829
#6 A 0.84 11 0.142 12.58 A[8-11] 9 1.278 0.84
B 11 0.754 B[0-4 1.428 0.7993
C 11 0.754 Cl4-8 1.0 0.8859

strategy in case 2 arranges task A to finish 21 time units ear-
lier than the requested deadline, and earns an extra reward
of 3.964. In exchange, issues B and C have smaller flexibil-
ities f(B) and f(C), hence lower success probability ps(B)
and ps(C). In case 3 and case 4, the negotiation deadline
e =9. In case 3, issue A has a much lower success probabil-
ity ps(A) than in case 4, so the negotiation on A is scheduled
before the negotiation on B and C. In case 5 and case 6, the
negotiation deadline e = 11 and the negotiation issues on A,
B and C are sequenced according to the success probabil-
ities; the issues with lower success probability start earlier.
In case 6, issue A has a higher earlier reward rate e(A4), and
all issues have lower decommitment penalties 8 than case
5, so the negotiation strategy in case 6 arranges task A to
finish 9 time units earlier than the requested deadline; this
earns an extra of reward 1.278. In exchange, issues B and
C have smaller flexibilities f(B) and f(C) and hence lower
success probabilities ps(B) and ps(C). It is also important
to notice that in all cases, issue B gets larger flexibility than
issue C, but has a similar success probability to that of is-
sue B. This occurs because it is much easier for issue C to
achieve a successful negotiation according to the function
that defines the relationship between the success probability
and the flexibility.

5. EXPERIMENTAL WORK

We have implemented the search and evaluation algo-
rithms so as to enable the reasoning in the multi-linked ne-
gotiation process as indicated in the examples described in
Section 4. New tasks were randomly generated with de-
commitment penalty 3 € [0,25], early finish reward rate
e € [0,0.2], and deadline dl € [60,70], and arrived at the
contractee agents periodically. We use the same task struc-
tures as described in Figure 2, tasks vary with randomly gen-
erated parameters. In this experiment, Computer Producer
Agent needs to deal with the multi-linked negotiation issues
related to the incoming task Purchase-Computer and the
outgoing task Get_Hardware and Deliver_Computer. The
following three different negotiation strategies were tested:

Table 3: Comparison of performance using different
negotiation strategies

Policy Task Decommit Early Utility
Canceled Penalty Reward

Sequenced 37.25 73.82 0 358.09
Std.Dev. 2.6 11.8 0 57.4

Parallel 23.70 333.20 29.06 385.20
Std.Dev. 2.6 47.6 17.0 86.8

Decision-Based 25.78 56.65 185.79 779.16
Std.Dev. 2.4 23.5 47.8 62.3

1. Sequenced Negotiation. The agent deals with the negoti-
ation issues one by one, first the outgoing negotiation is-
sues, then the incoming negotiation issues. The finish time
promised is the same as the deadline requested from the
other agent, and the outgoing issues get the largest possi-
ble flexibilities.

2. Parallel Negotiation. The agent deals with the negotiation
issues in parallel. It arranges reasonable flexibility (1.5, in
this experiment) for each outgoing task, and based on this
arrangement, the finish time of the incoming task is decided
and promised to the contractee agent.

3. Decision-Based Negotiation. The agent deals with the ne-
gotiation as the best negotiation strategy generated by Al-
gorithm 3.1.

The entire experiment contains 40 group experiments. Each
group experiment has the system running for 1000 time
clicks for three times and each time Computer Producer
Agent uses one of the three different approaches. Dur-
ing 1000 time clicks, there are 60 new tasks received by
Computer Producer Agent. Table 3 shows the comparison
of Computer Producer Agent’s performance using different
strategies. When the agent uses the sequenced negotiation
strategy, more tasks are canceled because of the missed ne-
gotiation deadlines. When the agent uses the parallel ne-
gotiation strategy, the agent pays a higher decommitment
penalty because the failure of the sub-contracted task pre-
vents the incoming task to be task-level successful. The
decision-based approach is obviously better than the other
two approaches. It chooses to have the negotiation strategy

to add a por:add_por_probability. TEMP_MAX, TEMP_STEP:
search parameters.

Output:the best negotiation strategy.

begin

dynamically according to the negotiation deadline and other
attributes. Under this experimental setup, it chooses the
case where all negotiations are performed in parallel about

13% of the time; it chooses the case where all negotiations
performed sequentially about 38% of the time, and the other
times it chooses the case where some negotiations are per-
formed in parallel. This strategy enables the agent to get
more early reward and pays fewer decommitment penalties.

The experimental result shows that in a multi-linked ne-
gotiation situation, it is very important for the agent to
reason about the relationship among different negotiation is-
sues and make a reasonable decision about how to perform
negotiation. This decreases the likelihood of the need for
decommitment from previously settled issues and increases
the likelihood of utility gain.

6. SUMMARY

We presented a formalized model of the multi-linked ne-
gotiation problem enables the agent to represent and reason
about the relationships among different negotiation issues
explicitly. Using this model, the best negotiation strategy
can be found by a complete search algorithm. A heuris-
tic search algorithm finds the nearly-optimal approach in
affordable time. Experimental work shows that this man-
agement technique for multi-linked negotiation leads to im-
proved performance. In this work, we model the success
probability as a function that depends on a set of features,
but we have not work out how to construct such a function.
In the future, we’d like to use meta-level information and
learning technologies for an agent to construct and adjust
the structure of this function. Also, in this work, the result
of the negotiation is limited to two outcomes: “success” or
“fail”. Actually, when negotiation is successful, there are
potentially many different outcomes depending on the pa-
rameters in the commitment. The negotiation process can
be modeled as a Markov decision process, and the negotia-
tion strategy can be generated as a policy This is another

Generate all possible PORs = {(v;,v;)|vi,v; € V}
total_value = 0;
total_inverse_value = 0;
base_value = evaluate_schedule(N'S(V,0), w);
for each por € PORs
d(por) = (V,por)
por.value = evaluate_schedule(N'S(¢p(por)), w).value
- base_value;
por.inverse_value = 1.0 / por.value;
total_value = total_value + por.value;
total_inverse_value = total_tnverse_value + por.inverse_value;
for each por € PORs
por.in_probability = por.value/total_value;
por.out_probability = por.value/total_inverse_value;
Jor(t =TEMP_MAX;t>=0;t— = TEMP_STEP)
generate a random number r between [0,1];
if(r < add_por_probability)
choose a por e from PORs/current_ordering
according to in_probability
new-ordering = current_ordering Ne
else
choose a por e from current_ordering according to
out_probability
new_ordering = current_ordering - e
evaluation_result = evaluate_schedule(N S(¢(new_ordering)),

w);

change_value = evaluation_result.value - current_value;

if (change_value > 0||random < e~change-value/t)
current_-value = evaluation_result.value;
current_assignment = evaluation_result.assignment;
current_ordering = new-ordering;

if (change_value > best_value)
best_value = current_value ;
best_assignment = current_assignment;
best_ordering =current_ordering;

return (best_ordering, best_assignment);

end

ALGORITHM .2. Ewaluate a negotiation schedule with all pos-

sible feature assignments and find the best feature assignments

and the best value.

Input: negotiation schedule ¢, a set of valid feature assignments

7. REFERENCES L , w={pr}, k=1,..,m.

(1] K.S. Decker and V. R. Lesser. Quantitative modeling of Output: the best value with the best feature assignment.
complex environments. International Journal of Intelligent begin
Systems in Accounting, Finance, and Management,
2(4):215-234, Dec. 1993. Special issue on “Mathematical and
Computational Models of Organizations: Models and
Characteristics of Agent Behavior”.

[2] T. Sandholm and V. Lesser. Advantages of a leveled

direction of our future work.

for(i=0; i<=m; i+=sample_step)
add p; to search_set;
for each ; in search_set
for(t=0; t<search_limit; t++)
if(EV(®, piv1) > EV(P, pi))

commitment contracting protocol. In Proceedings of the i=i+1;
Thirteenth National Conference on Artificial Intelligence, else if(EV(p, pi—1) > EV(9,¥i))
pages 126-133, 1996. 1=14-1;
[3] X. Zhang. Sophisticated Negotiation In Multi- Agent Systems. else
PhD thesis, University of Massachusetts Amherst, 2002. break;

if(EV(¢, pi) > best_value)
best_value = EV(¢, vi);
best_assignment = 1;
return(best_value,best_assignment);

[4] X. Zhang and V. Lesser. Multi-linked negotiation in
multi-agent system. In Proceedings of the First International
Joint Conference on Autonomous Agents And MultiAgent
Systems (AAMAS 2002).
[5] X. Zhang, V. Lesser, and R. Podorozhny. New results on end
cooperative, multistep negotiation over a multi-dimensional
utility function. In AAAI Fall 2001 Symposium on
”Negotiation Methods for Autonomous,”.

APPENDIX

ALGORITHM .1. Find the best negotiation strategy.
Input: M = (V,E), the start time for negotiation (), a set of
valid feature assignments w = {¢},k = 1,...,m, the probability

