
Poaching and Distraction in Asynchronous Agent Activities

Mike H. Chia, Daniel E. Neiman, Victor R. Lesser
University of Massachusetts

Computer Science Department
Amherst, MA 01003

{ chia,dann,lesser} @ cs.umass.edu

Abstract

We investigate coordination issues in a distributed job-
shop scheduling system in which agents schedule potentially
contentious activities asynchronously in parallel. Agents
in such a system will in general have a limited view of
the global state of resources and must exchange appropri-
ate state information with other agents in order to sched-
ule effectively. Howevel; even given perfect instantaneous
knowledge of other agents ’ resource requirements, agents
still may not be able to schedule effectively if they do not
also model the possible future actions of other agents and
the effects of their own actions. We formally describe two
types of agent behaviors, poaching and distraction, arising
from the asynchronous nature of distributed systems that de-
crease scheduling effectiveness, and we present experimen-
tal results from a distributed airport resource management
system demonstrating a signijcant improvement in schedul-
ing performance when coordination mechanisms are used
to prevent such behaviors.

1. Introduction

The scheduling of resources and activities is known to
be an extremely difficult problem [5 , 4, 12, 131. In a dis-
tributed scheduling system, the complexity increases due
to the possibility of interactions between scheduling agents
such as when agents are allowed to borrow resources from
each other to satisfy local goals. Examples of distributed
scheduling applications include scheduling machines in
manufacturing facilities, scheduling airline ground services
in an airport, and scheduling transportation of goods.

In this paper, we explore issues of agent coordination in
distributed scheduling. In particular, we study the behav-
ior of agents in an environment in which agents develop
schedules concurrently in batch mode, are cooperative, and
agree to share resources. In previous work, Neiman, et. al.
[9] have investigated the questions of what types of meta-

0-8186-8500-W98 $10.00 0 1998 IEEE
88

level information to communicate and how that informa-
tion is to be used to schedule more effectively. We extend
that work by investigating the lack of coordination among
agents that can exist even when agents are able to model
the global state of resources. We show that when agents are
not able to model the state and possible future activities of
other agents, they cannot schedule effectively [3]. We in-
vestigate two types of behavior resulting from this lack of
coordination: poaching and distraction.

In the following section, we give a brief overview of our
experimental system, the Distributed Dynamic Scheduling
System (Dis-DSS) and our problem domain, airport ground
service scheduling. In section 3, we discuss in detail the
agent coordination issues and agent behaviors on which we
have focused in our most recent experiments with the Dis-
DSS. In section 4, we present coordination mechanisms that
we have added to our system and the results of experiments
indicating that the quality of scheduling can be significantly
improved with no appreciable increase in run time by judi-
cious synchronization of agent activities. Finally, in section
5, we conclude and present directions for further study.

2. Experimental system

Our experimental system for investigating resource-
constrained scheduling problems is a distributed version of
the Dynamic Scheduling System (DSS) [6]. The DSS is a
micro-opportunistic scheduler based on a blackboard archi-
tecture. A problem instance consists of a set of orders and a
set of resources. Each order is represented as a set of tasks
and subtasks, and each subtask requiring a resource is as-
signed a service goal. Service goals are continually rated
based on the tightness of constraints on the particular task
and required resource. At each time step, the system at-
tempts to reserve resources for those service goals that are
deemed to be most constrained using a multiple-perspective
heuristic [111.

Service goals are satisfied by attempting three progres-
sively costly methods: (1) Assignment: The system sim-

http://cs.umass.edu

ply reserves an available resource to satisfy a service goal.
(2) Preemption: The system cancels an existing reservation
so that the resource can be reserved for a more constrained
service goal. This is a limited form of backtracking. (3)

straints bbetween subtasks. Moreover, the search space is dy-
namic because requests for resources may arrive from other
agents at any point during scheduling.

Right-shift: The system forcibly relaxes the latest-finish-
time constraint in order to satisfy a service goal that would
otherwise go unsatisfied. In other words, the time interval of
the reservation is shifted later than the service goal's latest
finish time. This usually causes decreased solution quality
in the form of late orders and is a method of last resort.

The Distributed Dynamic Scheduling System (Dis-DSS)
[9] extends the DSS by partitioning the order and resource
sets and distributing the partitions among several agents.
Dis-DSS is a cooperative environment. When unable to sat-
isfy a service goal locally, agents can generate requests in
which they ask another agent to satisfy the goal. Agents op-
erate asynchronously, simultaneously developing schedules
for their respective order sets.

Each agent is essentially a DSS scheduling agent but
uses additional control heuristics to account explicitly for
the fact that it is operating in a multi-agent system where
other agents are reserving resources at the same time.
Heuristics from the single agent system cannot be applied
unchanged to a multi-agent system, an observation also
made by Decker, et. al. in their work on developing control
paradigms for a parallel blackboard system [13. For exam-
ple, control heuristics in a distributed system need to ex-
plicitly account for the possible outcomes of activities that
are currently executing in order to avoid scheduling over-
lapping tasks.

Our test-bed system built on top of Dis-DSS is the Dis-
tributed Airport Resource Management (Dis-ARM) system.
Dis-ARM solves airport ground service scheduling (AGSS)
problems. Each agent is assigned a set of orders, which
in the AGSS domain are flights requiring ground service
such as loading/unloading baggage, cleaning, refueling, etc.
Agents are responsible for scheduling ground service so that
their flights are able to meet arrival and departure deadlines.

Each agent also owns a set of resources such as gates,
baggage trucks, cleaning trucks, fuel trucks, etc. In general,
the reservation of a resource for a given task must account
for setup and travel times of resources as well as the actual
servicing times. These times are dependent upon the type
and location of individual resources. Individual resources
of the same type are not considered interchangeable. Only
the agent owning a particular resource will have exact in-
formation regarding the time needed for setup and travel.
In addition, because of communication delays, an agent can
more readily access its own individual resources than re-
sources owned by another agent.

The search space of alternatives available to the sched-
uler is quite large due to the number of possible resources,
the number of tasks to be scheduled, and the number of con-

3. Coordination in distributed scheduling

In a distributed system, scheduling agents may not have a
complete view of global resource availability and demand.
To enable more effective scheduling, Dis-DSS agents ex-
change nneta-level control information in the form of tex-
ture measures [141, abstract representations of an agent's
resource availability, current resource usage, and estimated
future demand. By obtaining texture measures from other
agents, an agent can build a more global view of the sta-
tus of resources. Agents use this information to make deci-
sions regarding what service goals to schedule next (based
on which are most constrained) and how to satisfy service
goals (whether to use a local resource or request a resource
from another agent). Agents can also use the information
to determine which agents are likely to have a surplus of a
given type of resource and thus are good candidates from
which to request resources. However, even with complete
informatiion about the state of resource availability, agents
may not be able to schedule in a globally optimal manner
if they do not explicitly account for the possible actions of
other agents in the system [3].

In the following sections, we describe two agent behav-
iors, poaching and distraction, that may decrease schedul-
ing performance. We use the following notation for describ-
ing the conditions under which these behaviors can occur.
Let denote service goal i for agent a requiring resource
type x, (where a resource type is the set of resources that
can satisfy the service goal). Let R(g&, t) denote the rating
at time t of service goal g,",, and E(g&) denote its execu-
tion time, i.e. the time when agent a attempts to reserve a
resource of type x for service goal i.

The best-first heuristic used by each scheduling agent
can then be expressed as

This simply states that agent a will execute service goal i at
time t if and only if it is the most highly rated of agent a's
goals at time t .

3.1. Poaching

We define a poaching event as one in which an agent
reserves a resource, thereby preventing another agent with
a more constrained or critical goal from securing that re-
source. Poaching activity arises due to the fact that there
are multiple agents scheduling asynchronously using a best-
first heuriistic. An agent may make a locally correct decision

89

Service Goal Ratings at Time 51
Goal Time Interval Resource Rating Rank
Agent 0 :

X84 (5016 5041) BAG-TRK 3945 2
#59 (5009 5036) BAG-TRK 3877 3
#73 (5009 5036) BAG-TRK 3877 4
Aoent 1 I ~ ~ - ~ ~ ~ . -.
#173 (5027 5050) BAG-TRK 3570 5
#184 (5024 5050) BAG-TRK 3537 8
#191 (5024 5050) BAG-TRK 3537 7
#159 (4997 5033) BAG-TRK 3336 9
#123 (5019 5046) BAG-TRK 2659 12

#212 (5029 5056) BAG-TRK 666 30
#lo4 (5015 5031) CLEAN-TRK 148 43
R98 (5014 5032) FUEL-TRK 146 45

Figure 1. An example of direct poaching.
Agent 2 can potentially reserve a baggage
truck for goal #177 before agent 0 can pro-
cess the more constrained goal #45.

by satisfying its most highly rated service goal, but this may
not be the appropriate action in a global context - another
agent may have a more highly rated goal that overlaps this
goal and could be satisfied by the same resource. Poach-
ing activity leads to decreased solution quality when the
“poached” goal can no longer be satisfied without expen-
sive constraint relaxation or backtracking activities.

Note that poaching can still be a problem even if two
goals requiring the same resource type do not directly over-
lap temporally. When resources become highly constrained
(they are globally scarce or need to be reserved for long pe-
riods of time), service goals that normally do not overlap
directly will begin to feel the effects of poaching activity
due to reduced flexibility in the schedule and the reduced
ability of the scheduler to exploit slack in the schedules.

We have defined two classes of poaching activity:
(1) Direct Poaching: At time t , agents A and B both

have as their most highly rated service goals, goals requiring
the same resource type X . However, agent B’s rating is
much lower than agent A’s indicating that agent B’s goal
is less constrained. Because a goal requiring resource type
X is agent B’s highest priority, it can reserve the required
resource before agent A, despite the lower rating of agent
B’s goal. Figure 1 is a Dis-ARM trace listing showing an
example of such a poaching situation.

Formally, we express the situation as

vx ‘dlc # i R(SAX,i, t) > R(g;,k7 t) (2)

vx Vl # .7. R(SBX,j, t) > %I&,,, t) (3)

R(SAX,i, t) R(SBx,j, t) (4)

From equations 1,2, and 3 we obtain

WSAX,i) = E(&) = t (5)

and combining equation 5 with equation 4 we have the fol-

Service Goal Ratings at Time 868
Goal Time Interval Resource Rating Rank
Agent 0 :

#59 (4848 4880) CTR-TRK 73 116
#179 (4872 4895) CTR-TRK 61 125
Agent 1 :
6 (4847 4868) CLEAN-TRK 3993 4
#224 (4865 4892) CLEAN-TRK 2537 15
#177 (4871 4896) BAG-TRK 1272 41

Agent 2:
#157 (4853 4882) CLEAN-TRK 5994 0
#194 (4863 4887) CLEAN-TRK 4716 1
#187 (4865 4887) CLEAN-TRK 4689 2
#188 (4865 4887) FUEL-TRK 4231 3
#130 (4860 4885) FUEL-TRK 3915 5

Figure 2. An example of indirect poaching.
Agent 0 can potentially reserve a service
truck for goal #118 before agent 1 can pro-
cess the more constrained goal #65.

lowing condition:

In this situation, poaching is possible because both
agents execute their service goals at the same time step, and
therefore it is possible (due to varying response times to
remote requests for resources) that agent B can obtain a re-
source reservation before agent A despite that fact that agent
B’s service goal has a much lower rating.

(2) Indirect Poaching: At time t , agent A and agent B
both have service goals requiring the same resource type X .
The ratings for agent A are higher or the same as those for
agent B. For agent B, these are its most highly rated service
goals, but agent A also has service goals requiring resource
type Y which are its most highly rated goals (and thus more
highly rated than those requiring resource type X) . In this
case, agent B can reserve resources of type X while agent
A is working on scheduling resources of type Y . Figure 2
shows an example of such a situation.

Formally, we express the situation as

From equations 1 ,7 , and 8 we obtain

90

Service Goal Ratings at Time 76
Goal Time Interval Resource Ratinr Rank
A g e n t 0 t
1 7 4 (4 8 7 0 4 8 9 9) GATE 4 9 3 2 7
2 4 7 (4 8 8 0 4 9 0 9) GATE 185 4 0
1 2 (4 8 5 3 4 8 7 0) CLEAN-TRK 9 3 5 1
#11 (4 8 4 7 4 8 7 0) BAG-TRK 9 1 60
#84 (4 8 4 8 4 8 7 5) FUEL-TRK 8 7 7 3
8 2 (4 8 4 4 4 8 7 5) BAG-TRK 7 9 88
A g e n t 1:

5 7 (4 8 4 4 4 8 8 4)
4 3 (4 8 4 5 4 8 8 4) GATE 1 4 1 3 0 A

GATE
#13 (4 8 4 5 4 8 7 4) GATE
'416 (4 8 4 7 4 8 7 6) GATE 1 3 3 9 5
1 9 1 4 8 4 8 4 8 7 7) GATE 1 3 2 8 6

GATE 1 0 9 7 9
A g e n t 2 :
#50 (4 8 4 4 4 8 8 4) GATE 1 3 7 6 2
X64 (4 8 4 3 4 8 8 4) GATE 1 3 4 0 4
#99 (4 8 5 0 4 8 8 9) GATE 1 1 4 4 7
l o 6 (4 8 4 6 4 8 8 9) GATE 1 1 2 2 8
9 2 (4 8 5 0 4 8 8 9) GATE 9 2 9 11
#131 (4 8 5 2 4 8 9 4) GATE 9 0 6 1 2

Service Goal Ratings at Time 116
Goal Time Interval Resource Rating 1s Goal Time Interval Resource Rating Rank

Service Goal Ratings at Time 138

A g e n t 0 :
1 2 (4 8 5 3
1111 (4 8 4 7
8 4 (4 8 4 8
8 2 (4 8 4 4
8 3 (4 8 4 8
8 1 (4 8 5 4

4 3 (4 8 4 5
5 7 (4 8 4 4
1 9 (4 8 4 8
1 6 (4 8 4 7
1 3 (4 8 4 5
#85 (4 8 5 0
A g e n t 2:
5 0 (4 8 4 4
9 9 (4850
6 4 (4 8 4 3
#lo6 (4 8 4 6
#131 (4 8 5 2
9 2 (4 8 5 0

A g e n t 1:

4 8 7 0)
4 8 7 0)
4 8 7 5)
4 8 7 5)
4 8 7 5)
4 8 8 1)

4 8 8 4)
4 8 8 4)
4 8 7 7)
4 8 7 6)
4 8 7 4)
4 8 8 9 1

4 8 8 4)
4 8 8 9)
4 8 8 4)
4 8 8 9)
4 8 9 4)
4 8 8 9)

CLEAN-TRK
BAG-TRK
FUEL-TRK
BAG-TRK
CLEAN-TRK
BAG-TRK

GATE
GATE
GATE
GATE
GATE
GATE

GATE
GATE
GATE
GATE
GATE
GATE

9 3
9 1
87
7 9
7 8
7 0

2 4 7 1
2 3 7 6
2 2 4 7
2 2 0 5
2 1 0 5
1 8 9 5

2 3 7 6
2 3 3 2
2 2 8 7
2 1 4 5
2 0 3 9
1 8 9 5

5 2
6 1
7 4
8 7

:io1
: I32

0
1
5
6
8

1 0

2
3
4
7
.9
I1

A g e n t 0 :
8 3 (4 8 4 8
#11 (4 8 4 7
8 4 (4 8 4 8
8 2 (4 8 4 4
#81 (4 8 5 4
x 7 9 (4 8 4 4
A g e n t 1 t
4 8 (4 8 5 5
1 5 (4 8 5 5
6 2 (4 8 5 4
x 4 3 (4 8 4 5
5 7 (4 8 4 4
#I8 (4 8 5 7
A g e n t 2 :
1155 (4 8 5 4
6 9 (4 8 5 3
9 9 (4850
5 0 (4 8 4 4
6 4 (4 8 4 3
l o 6 (4 8 4 6

4 8 7 5)
4 8 7 0)
4 8 7 5)
4 8 7 5)
4 8 8 1 1
4881)

4 8 7 2)
4 8 7 2)
4 8 7 2)
4 8 8 4)
4 8 8 4)
4 8 7 4)

4 8 7 2)
4 8 7 2)
4 8 8 9)
4 8 8 4 1
4 8 8 4)
4 8 8 9)

CLEAN-TRK
BAG-TRK
FUEL-TRK
BAG-TRK
BAG-TRK
SRV-TRK

CLEAN-TRK
CLEAN-TRK
CLEAN-TRK
GATE
GATE
CLEAN-TRK

CLEAN-TRK
CLEAN-TRK
GATE
GATE
GATE
GATE

7 5 2
9 1
8 7
7 9
7 0
6 9

3 0 7 6
3 0 7 6
3 0 0 2
2 6 6 2
2 5 5 6
2 2 9 6

3 0 0 2
2 8 9 1
2 5 9 8
2 5 5 6
2 4 5 8
2 3 7 5

5 1
85
9 0

1 0 2
1 4 1
1 4 7

0
1
2
5
7

1 2

3
4
6
8
9
10

Figure 3. An example of distraction. At time 76, all agents are scheduling gates. At time 116, agent
0 finishes assigning gates and begins to assign cleaning trucks. By time 138, cleaning trucks have
become globally constrained, causing agents 1 and 2 to begrin assigning cleaning trucks in lieu of
finishing their gate assignments.

Finally, combining equations 9, 10, and 12 we have the fol-
lowing condition

In this situation, poaching is quite likely because agent B
executes its service goal earlier than agent A.

If the poaching activity continues and resource type X
becomes constrained, then eventually agent A's ratings for
service goals requiring resource type X will rise to be the
most highly rated, and agent A will begin competing with
agent B for the same resources. Depending on the global
availability of that resource type and on the communication
delay for exchanging texture measures, the damage can be
done before agent A is able to respond. In fact, in some
situations we do not want agent A to respond at all because
shifting agent A's attention away from resource type Y to
compete for resources of type X can have a detrimental ef-
fect on overall scheduling performance as we will see in the
next section.

An interesting phenomenon in a distributed system is
that an agent can actually "poach" on its own goals (that
is, satisfy goals out of order) due to the communication de-
lays in dealing with remote requests. An agent may execute
service goals in order with respect to their ratings, but the
times at which the resources are actually reserved (which
depend on the actions of other agents) may not be in order.

3.2. Distraction

One effect of the use of texture measures combined
with a most-constrained-variable heuristic in a micro-
opportunistic system is that agents tend to synchronize their
scheduling activities. As agents begin to reserve resources,
a particular type of resource becomes constrained and ser-
vice goals requiring that resource type become more highly

rated causing agents to increasingly focus on scheduling
those servitce goals. This causes more reservations of the
given resource type causing the resource to become even
more constrained. This feedback process continues until
eventually all agents are focused on scheduling the same
type of resjource, the globally most constrained type.

This type of synchronization can be an undesirable fea-
ture in some situations. Not only does it increase the like-
lihood of poaching, but its affect on the focus of an agent's
activity can cause an agent to be distracted. Distraction oc-
curs whenever an agent receives information from another
agent and based on this information pursues an undesirable
course of action [7]. In our system, we have encountered
an analog to distraction in which an agent is prevented from
executing iimportant precursor activities by the increasing
pressure of external events. Note that in Lesser and Erman
[7], distracting information has the connotation of being
noisy or misleading, and the receiving agent has the respon-
sibility of interpreting it as such and pursuing more criti-
cal computations. Here, we present a situation in which
the communicated information is good, and the receiving
agent is placed on the horns of a dilemma; either it reacts
to the incoming information, leaving time critical process-
ing unperformed, or it ignores the new information, thereby
failing to compete for critical resources. Unlike the origi-
nal distraction scenario encountered in HEARSAY-11, it is
the distraci'ing agent that should act responsibly, either by
working in a less globally sensitive area or by simply idling
until other agents are capable of synchronizing planning ac-
tivities. Such behavior is possible only if the distracting
agent has enough information to gauge the effects of its ac-
tions.

Distractiion is particularly evident in our system in cases
where agents possess dramatically different loads. An
agent who has relatively few orders to schedule can be-

91

gin scheduling certain resources well before other agents.
This may cause a resource to become constrained, which in
turn causes other agents to begin scheduling that resource
instead of what they were scheduling. This is a problem
when the order in which resources are scheduled is impor-
tant. For example, in the AGSS domain, scheduling a gate
location for a flight allows the scheduler to better estimate
travel times for other resources such as baggage trucks and
fuel trucks needed to service that flight. Without a fixed
gate assignment, the scheduler must assume the maximum
travel time when scheduling these other resources; this can
cause a task to appear more constrained than it really is. It
is clearly beneficial for agents to schedule gates early on
in a scheduling episode. In the situation with an unbalanced
load among agents, one agent can distract other agents from
scheduling gates early. Figure 3 is an example trace of such
a situation.

For the Dis-ARM system, we would like for the follow-
ing to be true

Va, i, j VY # G %:j) < E(&) (14)

where G represents the gate resource type. That is, we
would like each agent to finish executing their service
goals requiring gates before starting to execute other ser-
vice goals.

If the order distribution is not balanced evenly among
agents we have the possibility that an agent (say B) may be-
gin to schedule at time tl a non-gate resource type Y # G
before another agent A has finished all of its gate assign-
ments:

(15)

This creates an increase in agent A’s rating of goals requir-
ing resource type Y , and at some time t 2 > tl we may have

E(SBy,i) = .WSAG,j) = tl

I
Resource type
Gates
Fuel trucks
Catering trucks
Service trucks
Baggage trucks
Cleaning trucks

and thus
E(&) < E(SAG,l> (17)

which violates our desired condition that all agents schedule
gates before any other resource type.

In the next section we present coordination mechanisms
for addressing the problems of poaching and distraction and
the results of experiments for testing their effectiveness.

Number of resources:
Agent 0 Agent 1 Agent 2

17 16 16
6 6 6
4 4 4
1 2 2

1 1 1 1 1 1
3 3 2

1

4. Discussion of experimental results

In the following sections, we present coordination mech-
anisms for addressing the problems of poaching and dis-
traction, and we present the results of experiments for test-
ing their effectiveness. We show the effect of adding these
mechanisms to two reference systems: (1) a system in
which agents only have a local view of resource availability

Number of orders:

16-20

Table 1. Order distribution among agents for
each set of experiments.

and demand (which we refer to as the “local-view heuris-
tic”) and (2) a system in which agents exchange texture
measures for building a global view of resources (which we
refer to as the “texture-based heuristic”).

Because of the complexity of interactions among
scheduling agents, the addition of our new coordination
mechanisms does not guarantee an increase in scheduling
performance in all cases. For some individual runs, we ob-
serve a decrease in performance, but on average, the system
performance increased significantly. Performance is mea-
sured in terms of the total tardiness in the schedules of all
agents (and thus, smaller numbers are better with zero tar-
diness being the best).

Each set of experiments consists of 21 runs, grouped
into five different load distribution conditions (see table 1).
Each run within a condition has a different order distribu-
tion among three agents (orders were assigned randomly).
Orders are taken from a set of 49 actual Northwest Airlines
flights requiring service at Detroit Metropolitan Airport dur-
ing a one hour period. Resources are distributed more or
less evenly among the agents for all runs. The total number
of resources is set to be minimally sufficient for satisfying
the requirements of the 49 orders. Table 2 gives the exact
resource distribution among the three agents.

We include one order distribution that assigns all 49 or-
ders to a single agent in order to approximate a central-
ized scheduler. It is an approximation in that one agent
must schedule all of the orders but it does not own all the
resources and will need to request resources from other
agents. Because the other agents do not have any orders
of their own to schedule, these requests will be handled

92

Local-view hewtsttc only c
Local-view heurislh? + anti-poaching mech. -+-

2 20

c 20- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' In-
U -

6 -60 -
1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21

Runt

(a)

Teaiur heuristic only c
ĉ 140 l l l l l r l l r l l l l l ' ' " "
t 120 Texhlre heUrIS1IC + anti-p ching mech. -+-
D 100

U

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I9 20 21
Run U

-1201 8 3 " " h a a ' a a 3 8 ' I

Local-view heuristic only t
Local-view heuristic + gate coordination -t- i .E 80

5 60

; 40 E 20

+--+--+

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Run Y

(a)

Teaiur heuristic only c
- 140 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' " ' * '
L 120 Texture heuristic + gal coordmalm -t-
D 100

1 2 3 4 5 6 7 8 9 10 Run 11 I 12 13 14 15 16 17 18 19 20 21

Figure 4. Change in performance due to the
addition of the anti-poaching mechanism to
the (a) local and (b) texture heuristics.

Figure 5. Change in performance due to the
addition of the gate coordination mechanism
to the ((a) local and (b) texture heuristics.

promptly. This "centralized" scenario produced very good
results indicating that the tardiness we encounter during
scheduling is, in fact, an artifact of the asynchronous and
distributed nature of the system.

4.1. Anti-poaching mechanism

We hypothesize that in order to prevent poaching, agents
need to communicate goal ratings for their top n service
goals in addition to information about resource supply and
usage in the texture measures. By exchanging this in-
formation agents can determine whether their top priority
scheduling activities would poach on another agent's activ-
ities. Our anti-poaching mechanism works as follows: Be-
fore scheduling a service goal, each agent checks whether
the goal is rated above a given threshold and therefore ac-
cessing a highly contested resource. It then checks whether
any other agent has a service goal that is rated much more
highly (where "much" is a parameterized value) than its
own, and if so the agent will not schedule its service goal
but instead idle to avoid a possible poaching activity.

Both heuristics show a significant performance increase
with the addition of the anti-poaching coordination mecha-
nism. Figure 4 shows the change in total tardiness observed
in our experiments, and table 3 shows the mean change in
total tardiness along with the significance value p for the
matched-pair t-test.

It is interesting to note that the anti-poaching mecha-
nism improves performance for the local heuristic as well
as the texture heuristic. Our mechanism is based on ex-
changing information about agents' goal ratings and as-
sumes that these ratings are comparable so that the decision
about which agent has the more constrained goal is correct.
With the texture-based heuristic, agents are able to build
a view of global resource constraints and thus ratings are
comparable. With the local-view heuristic, it is not imme-
diately obvious that ratings are comparable. However, an
agent with a locally highly constrained resource (and corre-
sponding highly rated goal) will benefit from the opportu-
nity to rapidly transmit requests regarding that resource to
other agents.

4.2. Gate coordination mechanism

In our AGSS domain, distraction is primarily a problem
when agents are distracted from scheduling gates early on
in a scheduling episode. To prevent this distraction effect,
we have added a gate coordination mechanism to Dis-ARM
which simply disallows scheduling of resources other than
gates until ail1 agents have finished their gate assignments.
Obviously, a similar heuristic can be developed for any suf-
ficiently critical prerequisite operation in a scheduling or
planning environment.

Both locd and texture-based heuristics show a signifi-

93

Local -11.6 0.038
Texture Gate -11.7 0.033

Table 3. Mean change in performance due to
the addition of coordination mechanisms.

Anti-poach -24.6 O.OOO1
-18.6 0.0001

Table 4. Mean difference in performance be-
tween the local and texture heuristics with
and without coordination mechanisms.

cant performance increase with the addition of the gate co-
ordination mechanism. Figure 5 shows the change in total
tardiness observed in our experiments, and table 3 shows
the mean change in total tardiness along with the signifi-
cance value p for the matched-pair t-test.

4.3. Effectiveness of texture measures

In previous work, Neiman et. al. have shown the ef-
fectiveness of using the information contained in the com-
municated texture measures for scheduling [9, 101. Here,
we present a similar comparison of scheduling performance
with and without the use of texture measures. The follow-
ing data are the same as those presented in the previous two
sections, but are displayed so that the texture-based heuris-
tic and local heuristic are directly compared.

Figure 6 shows the difference in performance between
the local and texture heuristics with and without additional
coordination mechanisms. Even though the local heuristic
does gain by using the additional mechanisms, the texture
heuristic still performs significantly better when using the
same coordination mechanisms. Table 4 shows the mean
difference in total tardiness and significance value p for the
three cases.

4.4. Effect of mechanisms on parallelism

While our coordination mechanisms decrease total tar-
diness in flight schedules, they also decrease parallelism
which in turn may lead to increased run times. We have
found that on average, run times in fact do not increase and
in some cases even decrease. This is due to fewer back-
tracking episodes; by enforcing idleness in agents that may
be about to poach or distract, the mechanisms reduce the
number of mistakes that must be undone later. The amount

-80 .4: /I
U

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Run #

-1201 " ' " " " " " " " " ' 1

LwI-v iew heuristic + anti-poaching msch + 140 " ' " ' " " " " ' " " "
120 Texture heurIstIc + ampoaching mech. -+-
100

:bi
-50

-70 U
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

-90 " " " " " " " " " " '
~ u n n

Local-view heuristic + gate coordination c
Texlure heuwtic + gate cmrdlnatio -+-

20

E -60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16 19 20 21
: -90 -3z: Run #

Figure 6. Difference in performance between
the local and texture heuristics with and with-
out coordination mechanisms.

of time spent idle is compensated by avoiding costly chains
of backtracking.

Table 5 shows the mean change in the total number of
knowledge source (KS) executions (a measure of system
run time) and the mean change in number of KS executions
that are preemptions (a measure of backtracking) due to the
addition of each mechanism for both heuristics tested. The
table also includes the p-value significance for the paired
t-test for each condition.

We see that in most cases, there is a decrease in system
run time and in the amount of backtracking performed. One
exception was that the addition of the anti-poaching mech-
anism to the local heuristic did not significantly change the
run time or amount of backtracking performed. This is not
unexpected because the anti-poaching mechanism is only
truly effective if the underlying system makes use of non-
local information about goal ratings.

94

1 Heur./Mech. 11 B;;yl {6 I E K ; ~ p t Op7 1
LocaVAnti-poach
LocaVGate -77.5 0.002 0.04

Texture/Gate -112.1 0.003 -7.8 0.004
Texture/Anti-poach -99.5 0.04 -9.9 0.02

Table 5. Mean change in total number of KS
executions and mean change in number of KS
executions that are preemptions.

5. Conclusions and future work

In an attempt to understand better the issues involved in
distributed scheduling we have investigated in detail the dy-
namic behavior of the Dis-DSS scheduler. In doing so, we
have observed poaching and distraction events affecting the
performance of the distributed scheduling system and have
developed simple mechanisms to reduce or eliminate such
events. Our mechanisms suggest that in addition to state in-
formation about resource availability, agents need to model
the likely future actions of other agents.

While our mechanisms have been shown to increase
schedule quality, they are also highly serializing. By enforc-
ing idle time for agents that are about to poach or distract,
the mechanisms we have described reduce the parallelism
that is the raison d’2tre for distributed systems. Although
we have shown that this reduction in parallelism does not
increase the system run time, we hope to develop more so-
phisticated mechanisms that prevent agents from poaching
or distracting while allowing them to pursue other schedul-
ing activities that will not negatively affect other agents.

We also plan to develop a more general model of dis-
tributed scheduling that can describe poaching and distrac-
tion behaviors in a domain-independent way. We hope to in-
vestigate related work such as Decker and Lesser [2] , which
uses a commitment framework for coordinating agents,
and Liu and Sycara [8], which augments standard dispatch
scheduling with a look-ahead coordination mechanism.

Finally, the complexity of a real-world domain such as
the AGSS has limited us to studying relatively small prob-
lem instances. A better understanding of distributed sys-
tems may be gained by looking at problem instances with
many more orders and scheduling agents. In the near term,
we plan to continue testing our system on additional sets
of orders to give us a better understanding of the issues in
distributed scheduling.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grants No. IRI-932 1324
and No. IRI-9523419. Any opinions, findings, and con-
clusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views
of the National Science Foundation.

References

K. S. Decker, A. J. Garvey, M. A. Humphrey, and V. R.
Lesser. Control heuristics for scheduling in a parallel black-
board system. International Journal of Pattern Recognition
and Artijkial Intelligence, 7(2), 1993.
K. S. :Decker and V. R. Lesser. Designing a family of co-
ordination algorithms. In Proceedings of the First Intema-
tional Conference on Multi-Agent Systems, San Francisco,
July 1095.
E. H. Durfee, V. R. Lesser, and D. D. Corkill. Coherent
cooperation among communicating problem solvers. IEEE
Transactions on Computers, 36(1 l), 1987.
M. S. Fox. Constraint-Directed Search: A Case Study of
Job-Shop Scheduling. PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, PA, Dec. 1983.
M. R. ‘Garey and D. S. Johnson. Computers and Intractabil-
ity: A #Guide to the Theory of NP-Completeness. W.H. Free-
man, New York, 1979.
D. W. Hildum. Flexibility in a Knowledge-Based System for
Solving Dynamic Resource-Constrained Scheduling Prob-
lems. PhD thesis, Computer Science Department, University
of Massachusetts, Amherst, MA, May 1994.
V. R. Lesser and L. D. Erman. Distributed interpretation: A
model and an experiment. IEEE Transactions on Computers
- Special Issue on Distributed Processing, C-29(12): 1144-
1163, Dec. 1980.
J.3. Liu and K. P. Sycara. Multiagent coordination in tightly
coupled task scheduling. In Proceedings of the Second Inter-
national Conference on Multi-Agent Systems, Kyoto, Japan,
Dec. 1996.
D. E. Neiman, D. W. Hildum, V. R. Lesser, and T. W.
Sandholm. Exploiting meta-level information in a dis-
tributed scheduling system. In Proceedings of the Twelfth
National Conference on Artijicial Intelligence, Seattle, WA,
July 1!394.
D. E. Neiman and V. R. Lesser. A cooperative repair method
for a distributed scheduling system. In Proceedings of
the Third International Conference on ArtiJicial Intelligence
Planning Systems, Edinburgh, Scotland, May 1996.
D. E. Neiman and V. R. Lesser. Combining coordination and
repair strategies in a distributed scheduling system. Techni-
cal Relport 97-19, Computer Science Department, University
of Massachusetts, Amherst, Nov. 1997.
N. Sacleh. Look-Ahead Techniques for Micro-Opportunistic
Job Sh’op Scheduling. PhD thesis, Camegie Mellon Univer-
sity, Pittsburgh, PA, Mar. 1991.
S. F. Smith, M. S. Fox, and P. S. Ow. Constructing and main-
taining detailed production plans: Investigations into the de-
veloprnent of knowledge-based factory scheduling systems.
AI Ma,pazine, 7(4):45-61, Fall 1986.
K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed
constrained heuristic search. IEEE Transactions on System,
Man and Cybernetics, 21(6), Dec. 1991.

95

