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Abstract 

We investigate coordination issues in a distributed job- 
shop scheduling system in which agents schedule potentially 
contentious activities asynchronously in parallel. Agents 
in such a system will in general have a limited view of 
the global state of resources and must exchange appropri- 
ate state information with other agents in order to sched- 
ule effectively. Howevel; even given perfect instantaneous 
knowledge of other agents ’ resource requirements, agents 
still may not be able to schedule effectively if they do not 
also model the possible future actions of other agents and 
the effects of their own actions. We formally describe two 
types of agent behaviors, poaching and distraction, arising 
from the asynchronous nature of distributed systems that de- 
crease scheduling effectiveness, and we present experimen- 
tal results from a distributed airport resource management 
system demonstrating a signijcant improvement in schedul- 
ing performance when coordination mechanisms are used 
to prevent such behaviors. 

1. Introduction 

The scheduling of resources and activities is known to 
be an extremely difficult problem [5 ,  4, 12, 131. In a dis- 
tributed scheduling system, the complexity increases due 
to the possibility of interactions between scheduling agents 
such as when agents are allowed to borrow resources from 
each other to satisfy local goals. Examples of distributed 
scheduling applications include scheduling machines in 
manufacturing facilities, scheduling airline ground services 
in an airport, and scheduling transportation of goods. 

In this paper, we explore issues of agent coordination in 
distributed scheduling. In particular, we study the behav- 
ior of agents in an environment in which agents develop 
schedules concurrently in batch mode, are cooperative, and 
agree to share resources. In previous work, Neiman, et. al. 
[9] have investigated the questions of what types of meta- 
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level information to communicate and how that informa- 
tion is to be used to schedule more effectively. We extend 
that work by investigating the lack of coordination among 
agents that can exist even when agents are able to model 
the global state of resources. We show that when agents are 
not able to model the state and possible future activities of 
other agents, they cannot schedule effectively [3]. We in- 
vestigate two types of behavior resulting from this lack of 
coordination: poaching and distraction. 

In the following section, we give a brief overview of our 
experimental system, the Distributed Dynamic Scheduling 
System (Dis-DSS) and our problem domain, airport ground 
service scheduling. In section 3, we discuss in detail the 
agent coordination issues and agent behaviors on which we 
have focused in our most recent experiments with the Dis- 
DSS. In section 4, we present coordination mechanisms that 
we have added to our system and the results of experiments 
indicating that the quality of scheduling can be significantly 
improved with no appreciable increase in run time by judi- 
cious synchronization of agent activities. Finally, in section 
5, we conclude and present directions for further study. 

2. Experimental system 

Our experimental system for investigating resource- 
constrained scheduling problems is a distributed version of 
the Dynamic Scheduling System (DSS) [6]. The DSS is a 
micro-opportunistic scheduler based on a blackboard archi- 
tecture. A problem instance consists of a set of orders and a 
set of resources. Each order is represented as a set of tasks 
and subtasks, and each subtask requiring a resource is as- 
signed a service goal. Service goals are continually rated 
based on the tightness of constraints on the particular task 
and required resource. At each time step, the system at- 
tempts to reserve resources for those service goals that are 
deemed to be most constrained using a multiple-perspective 
heuristic [ 111. 

Service goals are satisfied by attempting three progres- 
sively costly methods: (1) Assignment: The system sim- 
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ply reserves an available resource to satisfy a service goal. 
(2) Preemption: The system cancels an existing reservation 
so that the resource can be reserved for a more constrained 
service goal. This is a limited form of backtracking. (3) 

straints bbetween subtasks. Moreover, the search space is dy- 
namic because requests for resources may arrive from other 
agents at any point during scheduling. 

Right-shift: The system forcibly relaxes the latest-finish- 
time constraint in order to satisfy a service goal that would 
otherwise go unsatisfied. In other words, the time interval of 
the reservation is shifted later than the service goal's latest 
finish time. This usually causes decreased solution quality 
in the form of late orders and is a method of last resort. 

The Distributed Dynamic Scheduling System (Dis-DSS) 
[9] extends the DSS by partitioning the order and resource 
sets and distributing the partitions among several agents. 
Dis-DSS is a cooperative environment. When unable to sat- 
isfy a service goal locally, agents can generate requests in 
which they ask another agent to satisfy the goal. Agents op- 
erate asynchronously, simultaneously developing schedules 
for their respective order sets. 

Each agent is essentially a DSS scheduling agent but 
uses additional control heuristics to account explicitly for 
the fact that it is operating in a multi-agent system where 
other agents are reserving resources at the same time. 
Heuristics from the single agent system cannot be applied 
unchanged to a multi-agent system, an observation also 
made by Decker, et. al. in their work on developing control 
paradigms for a parallel blackboard system [ 13. For exam- 
ple, control heuristics in a distributed system need to ex- 
plicitly account for the possible outcomes of activities that 
are currently executing in order to avoid scheduling over- 
lapping tasks. 

Our test-bed system built on top of Dis-DSS is the Dis- 
tributed Airport Resource Management (Dis-ARM) system. 
Dis-ARM solves airport ground service scheduling (AGSS) 
problems. Each agent is assigned a set of orders, which 
in the AGSS domain are flights requiring ground service 
such as loading/unloading baggage, cleaning, refueling, etc. 
Agents are responsible for scheduling ground service so that 
their flights are able to meet arrival and departure deadlines. 

Each agent also owns a set of resources such as gates, 
baggage trucks, cleaning trucks, fuel trucks, etc. In general, 
the reservation of a resource for a given task must account 
for setup and travel times of resources as well as the actual 
servicing times. These times are dependent upon the type 
and location of individual resources. Individual resources 
of the same type are not considered interchangeable. Only 
the agent owning a particular resource will have exact in- 
formation regarding the time needed for setup and travel. 
In addition, because of communication delays, an agent can 
more readily access its own individual resources than re- 
sources owned by another agent. 

The search space of alternatives available to the sched- 
uler is quite large due to the number of possible resources, 
the number of tasks to be scheduled, and the number of con- 

3. Coordination in distributed scheduling 

In a distributed system, scheduling agents may not have a 
complete view of global resource availability and demand. 
To enable more effective scheduling, Dis-DSS agents ex- 
change nneta-level control information in the form of tex- 
ture measures [ 141, abstract representations of an agent's 
resource availability, current resource usage, and estimated 
future demand. By obtaining texture measures from other 
agents, an agent can build a more global view of the sta- 
tus of resources. Agents use this information to make deci- 
sions regarding what service goals to schedule next (based 
on which are most constrained) and how to satisfy service 
goals (whether to use a local resource or request a resource 
from another agent). Agents can also use the information 
to determine which agents are likely to have a surplus of a 
given type of resource and thus are good candidates from 
which to request resources. However, even with complete 
informatiion about the state of resource availability, agents 
may not be able to schedule in a globally optimal manner 
if they do not explicitly account for the possible actions of 
other agents in the system [3]. 

In the following sections, we describe two agent behav- 
iors, poaching and distraction, that may decrease schedul- 
ing performance. We use the following notation for describ- 
ing the conditions under which these behaviors can occur. 
Let denote service goal i for agent a requiring resource 
type x, (where a resource type is the set of resources that 
can satisfy the service goal). Let R(g&, t )  denote the rating 
at time t of service goal g,",, and E(g&) denote its execu- 
tion time, i.e. the time when agent a attempts to reserve a 
resource of type x for service goal i. 

The best-first heuristic used by each scheduling agent 
can then be expressed as 

This simply states that agent a will execute service goal i at 
time t if and only if it is the most highly rated of agent a's 
goals at time t .  

3.1. Poaching 

We define a poaching event as one in which an agent 
reserves a resource, thereby preventing another agent with 
a more constrained or critical goal from securing that re- 
source. Poaching activity arises due to the fact that there 
are multiple agents scheduling asynchronously using a best- 
first heuriistic. An agent may make a locally correct decision 
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Service Goal Ratings at Time 51 
Goal Time Interval Resource Rating Rank 
Agent 0 : 

X84 (5016 5041) BAG-TRK 3945 2 
#59 (5009 5036) BAG-TRK 3877 3 
#73 (5009 5036) BAG-TRK 3877 4 
Aoent 1 I ~ ~ - ~ ~ ~ .  -. 
#173 (5027 5050) BAG-TRK 3570 5 
#184 (5024 5050) BAG-TRK 3537 8 
#191 (5024 5050) BAG-TRK 3537 7 
#159 (4997 5033) BAG-TRK 3336 9 
#123 (5019 5046) BAG-TRK 2659 12 

#212 (5029 5056) BAG-TRK 666 30 
#lo4 (5015 5031) CLEAN-TRK 148 43 
R98 (5014 5032) FUEL-TRK 146 45 

Figure 1. An example of direct poaching. 
Agent 2 can potentially reserve a baggage 
truck for goal #177 before agent 0 can pro- 
cess the more constrained goal #45. 

by satisfying its most highly rated service goal, but this may 
not be the appropriate action in a global context - another 
agent may have a more highly rated goal that overlaps this 
goal and could be satisfied by the same resource. Poach- 
ing activity leads to decreased solution quality when the 
“poached” goal can no longer be satisfied without expen- 
sive constraint relaxation or backtracking activities. 

Note that poaching can still be a problem even if two 
goals requiring the same resource type do not directly over- 
lap temporally. When resources become highly constrained 
(they are globally scarce or need to be reserved for long pe- 
riods of time), service goals that normally do not overlap 
directly will begin to feel the effects of poaching activity 
due to reduced flexibility in the schedule and the reduced 
ability of the scheduler to exploit slack in the schedules. 

We have defined two classes of poaching activity: 
(1) Direct Poaching: At time t ,  agents A and B both 

have as their most highly rated service goals, goals requiring 
the same resource type X .  However, agent B’s rating is 
much lower than agent A’s indicating that agent B’s goal 
is less constrained. Because a goal requiring resource type 
X is agent B’s highest priority, it can reserve the required 
resource before agent A, despite the lower rating of agent 
B’s goal. Figure 1 is a Dis-ARM trace listing showing an 
example of such a poaching situation. 

Formally, we express the situation as 

vx ‘dlc # i R(SAX,i, t )  > R(g;,k7 t )  ( 2 )  

vx Vl # .7. R(SBX,j, t )  > %I&,,, t )  (3) 

R(SAX,i, t )  R(SBx,j, t )  (4) 

From equations 1,2,  and 3 we obtain 

WSAX,i) = E(&) = t (5) 

and combining equation 5 with equation 4 we have the fol- 

Service Goal Ratings at Time 868 
Goal Time Interval Resource Rating Rank 
Agent 0 : 

#59 (4848 4880) CTR-TRK 73 116 
#179 (4872 4895) CTR-TRK 61 125 
Agent 1 : 
# 6  (4847 4868) CLEAN-TRK 3993 4 
#224 (4865 4892) CLEAN-TRK 2537 15 
#177 (4871 4896) BAG-TRK 1272 41 

Agent 2: 
#157 (4853 4882) CLEAN-TRK 5994 0 
#194 (4863 4887) CLEAN-TRK 4716 1 
#187 (4865 4887) CLEAN-TRK 4689 2 
#188 (4865 4887) FUEL-TRK 4231 3 
#130 (4860 4885) FUEL-TRK 3915 5 

Figure 2. An example of indirect poaching. 
Agent 0 can potentially reserve a service 
truck for goal #118 before agent 1 can pro- 
cess the more constrained goal #65. 

lowing condition: 

In this situation, poaching is possible because both 
agents execute their service goals at the same time step, and 
therefore it is possible (due to varying response times to 
remote requests for resources) that agent B can obtain a re- 
source reservation before agent A despite that fact that agent 
B’s service goal has a much lower rating. 

(2) Indirect Poaching: At time t ,  agent A and agent B 
both have service goals requiring the same resource type X .  
The ratings for agent A are higher or the same as those for 
agent B. For agent B, these are its most highly rated service 
goals, but agent A also has service goals requiring resource 
type Y which are its most highly rated goals (and thus more 
highly rated than those requiring resource type X ) .  In this 
case, agent B can reserve resources of type X while agent 
A is working on scheduling resources of type Y .  Figure 2 
shows an example of such a situation. 

Formally, we express the situation as 

From equations 1 ,7 ,  and 8 we obtain 
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Service Goal Ratings at Time 76 
Goal Time Interval Resource Ratinr Rank 
A g e n t  0 t 
# 1 7 4  ( 4 8 7 0  4 8 9 9 )  GATE 4 9 3  2 7  
# 2 4 7  ( 4 8 8 0  4 9 0 9 )  GATE 185 4 0  
# 1 2  ( 4 8 5 3  4 8 7 0 )  CLEAN-TRK 9 3  5 1  
#11 ( 4 8 4 7  4 8 7 0 )  BAG-TRK 9 1  60 
#84 ( 4 8 4 8  4 8 7 5 )  FUEL-TRK 8 7  7 3  
# 8 2  ( 4 8 4 4  4 8 7 5 )  BAG-TRK 7 9  88 
A g e n t  1: 

# 5 7  ( 4 8 4 4  4 8 8 4 )  
# 4 3  ( 4 8 4 5  4 8 8 4 )  GATE 1 4 1 3  0 A 

GATE 
#13 ( 4 8 4 5  4 8 7 4 )  GATE 
'416 ( 4 8 4 7  4 8 7 6 )  GATE 1 3 3 9  5 
# 1 9  1 4 8 4 8  4 8 7 7 )  GATE 1 3 2 8  6 

GATE 1 0 9 7  9 
A g e n t  2 : 
#50 ( 4 8 4 4  4 8 8 4 )  GATE 1 3 7 6  2 
X64 ( 4 8 4 3  4 8 8 4 )  GATE 1 3 4 0  4 
#99  ( 4 8 5 0  4 8 8 9 )  GATE 1 1 4 4  7 
# l o 6  ( 4 8 4 6  4 8 8 9 )  GATE 1 1 2 2  8 
# 9 2  ( 4 8 5 0  4 8 8 9 )  GATE 9 2 9  11 
#131 ( 4 8 5 2  4 8 9 4 )  GATE 9 0 6  1 2  

Service Goal Ratings at Time 116 
Goal Time Interval Resource Rating 1s Goal Time Interval Resource Rating Rank 

Service Goal Ratings at Time 138 

A g e n t  0 : 
# 1 2  ( 4 8 5 3  
1111 ( 4 8 4 7  
# 8 4  ( 4 8 4 8  
# 8 2  ( 4 8 4 4  
# 8 3  ( 4 8 4 8  
# 8 1  ( 4 8 5 4  

# 4 3  ( 4 8 4 5  
# 5 7  ( 4 8 4 4  
# 1 9  ( 4 8 4 8  
# 1 6  ( 4 8 4 7  
# 1 3  ( 4 8 4 5  
#85  ( 4 8 5 0  
A g e n t  2: 
# 5 0  ( 4 8 4 4  
# 9 9  (4850 
# 6 4  ( 4 8 4 3  
#lo6 ( 4 8 4 6  
#131 ( 4 8 5 2  
# 9 2  ( 4 8 5 0  

A g e n t  1: 

4 8 7 0 )  
4 8 7 0 )  
4 8 7 5 )  
4 8 7 5 )  
4 8 7 5 )  
4 8 8 1 )  

4 8 8 4 )  
4 8 8 4 )  
4 8 7 7 )  
4 8 7 6 )  
4 8 7 4 )  
4 8 8 9 1  

4 8 8 4 )  
4 8 8 9 )  
4 8 8 4 )  
4 8 8 9 )  
4 8 9 4 )  
4 8 8 9 )  

CLEAN-TRK 
BAG-TRK 
FUEL-TRK 
BAG-TRK 
CLEAN-TRK 
BAG-TRK 

GATE 
GATE 
GATE 
GATE 
GATE 
GATE 

GATE 
GATE 
GATE 
GATE 
GATE 
GATE 

9 3  
9 1  
87 
7 9  
7 8  
7 0  

2 4 7 1  
2 3 7 6  
2 2 4 7  
2 2 0 5  
2 1 0 5  
1 8 9 5  

2 3 7 6  
2 3 3 2  
2 2 8 7  
2 1 4 5  
2 0 3 9  
1 8 9 5  

5 2  
6 1  
7 4  
8 7  

:io1 
: I32  

0 
1 
5 
6 
8 

1 0  

2 
3 
4 
7 
.9 
I1 

A g e n t  0 : 
# 8 3  ( 4 8 4 8  
#11 ( 4 8 4 7  
# 8 4  ( 4 8 4 8  
# 8 2  ( 4 8 4 4  
#81 ( 4 8 5 4  
x 7 9  ( 4 8 4 4  
A g e n t  1 t 
# 4 8  ( 4 8 5 5  
# 1 5  ( 4 8 5 5  
# 6 2  ( 4 8 5 4  
x 4 3  ( 4 8 4 5  
# 5 7  ( 4 8 4 4  
#I8  ( 4 8 5 7  
A g e n t  2 : 
1155 ( 4 8 5 4  
# 6 9  ( 4 8 5 3  
# 9 9  (4850 
# 5 0  ( 4 8 4 4  
# 6 4  ( 4 8 4 3  
# l o 6  ( 4 8 4 6  

4 8 7 5 )  
4 8 7 0 )  
4 8 7 5 )  
4 8 7 5 )  
4 8 8 1 1  
4881) 

4 8 7 2 )  
4 8 7 2 )  
4 8 7 2 )  
4 8 8 4 )  
4 8 8 4 )  
4 8 7 4 )  

4 8 7 2 )  
4 8 7 2 )  
4 8 8 9 )  
4 8 8 4 1  
4 8 8 4 )  
4 8 8 9 )  

CLEAN-TRK 
BAG-TRK 
FUEL-TRK 
BAG-TRK 
BAG-TRK 
SRV-TRK 

CLEAN-TRK 
CLEAN-TRK 
CLEAN-TRK 
GATE 
GATE 
CLEAN-TRK 

CLEAN-TRK 
CLEAN-TRK 
GATE 
GATE 
GATE 
GATE 

7 5 2  
9 1  
8 7  
7 9  
7 0  
6 9  

3 0 7 6  
3 0 7 6  
3 0 0 2  
2 6 6 2  
2 5 5 6  
2 2 9 6  

3 0 0 2  
2 8 9 1  
2 5 9 8  
2 5 5 6  
2 4 5 8  
2 3 7 5  

5 1  
85  
9 0  

1 0 2  
1 4 1  
1 4 7  

0 
1 
2 
5 
7 

1 2  

3 
4 
6 
8 
9 
10 

Figure 3. An example of distraction. At time 76, all agents are scheduling gates. At time 116, agent 
0 finishes assigning gates and begins to assign cleaning trucks. By time 138, cleaning trucks have 
become globally constrained, causing agents 1 and 2 to begrin assigning cleaning trucks in lieu of 
finishing their gate assignments. 

Finally, combining equations 9, 10, and 12 we have the fol- 
lowing condition 

In this situation, poaching is quite likely because agent B 
executes its service goal earlier than agent A. 

If the poaching activity continues and resource type X 
becomes constrained, then eventually agent A's ratings for 
service goals requiring resource type X will rise to be the 
most highly rated, and agent A will begin competing with 
agent B for the same resources. Depending on the global 
availability of that resource type and on the communication 
delay for exchanging texture measures, the damage can be 
done before agent A is able to respond. In fact, in some 
situations we do not want agent A to respond at all because 
shifting agent A's attention away from resource type Y to 
compete for resources of type X can have a detrimental ef- 
fect on overall scheduling performance as we will see in the 
next section. 

An interesting phenomenon in a distributed system is 
that an agent can actually "poach" on its own goals (that 
is, satisfy goals out of order) due to the communication de- 
lays in dealing with remote requests. An agent may execute 
service goals in order with respect to their ratings, but the 
times at which the resources are actually reserved (which 
depend on the actions of other agents) may not be in order. 

3.2. Distraction 

One effect of the use of texture measures combined 
with a most-constrained-variable heuristic in a micro- 
opportunistic system is that agents tend to synchronize their 
scheduling activities. As agents begin to reserve resources, 
a particular type of resource becomes constrained and ser- 
vice goals requiring that resource type become more highly 

rated causing agents to increasingly focus on scheduling 
those servitce goals. This causes more reservations of the 
given resource type causing the resource to become even 
more constrained. This feedback process continues until 
eventually all agents are focused on scheduling the same 
type of resjource, the globally most constrained type. 

This type of synchronization can be an undesirable fea- 
ture in some situations. Not only does it increase the like- 
lihood of poaching, but its affect on the focus of an agent's 
activity can cause an agent to be distracted. Distraction oc- 
curs whenever an agent receives information from another 
agent and based on this information pursues an undesirable 
course of action [7]. In our system, we have encountered 
an analog to distraction in which an agent is prevented from 
executing iimportant precursor activities by the increasing 
pressure of external events. Note that in Lesser and Erman 
[7], distracting information has the connotation of being 
noisy or misleading, and the receiving agent has the respon- 
sibility of interpreting it as such and pursuing more criti- 
cal computations. Here, we present a situation in which 
the communicated information is good, and the receiving 
agent is placed on the horns of a dilemma; either it reacts 
to the incoming information, leaving time critical process- 
ing unperformed, or it ignores the new information, thereby 
failing to compete for critical resources. Unlike the origi- 
nal distraction scenario encountered in HEARSAY-11, it is 
the distraci'ing agent that should act responsibly, either by 
working in a less globally sensitive area or by simply idling 
until other agents are capable of synchronizing planning ac- 
tivities. Such behavior is possible only if the distracting 
agent has enough information to gauge the effects of its ac- 
tions. 

Distractiion is particularly evident in our system in cases 
where agents possess dramatically different loads. An 
agent who has relatively few orders to schedule can be- 
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gin scheduling certain resources well before other agents. 
This may cause a resource to become constrained, which in 
turn causes other agents to begin scheduling that resource 
instead of what they were scheduling. This is a problem 
when the order in which resources are scheduled is impor- 
tant. For example, in the AGSS domain, scheduling a gate 
location for a flight allows the scheduler to better estimate 
travel times for other resources such as baggage trucks and 
fuel trucks needed to service that flight. Without a fixed 
gate assignment, the scheduler must assume the maximum 
travel time when scheduling these other resources; this can 
cause a task to appear more constrained than it really is. It 
is clearly beneficial for agents to schedule gates early on 
in a scheduling episode. In the situation with an unbalanced 
load among agents, one agent can distract other agents from 
scheduling gates early. Figure 3 is an example trace of such 
a situation. 

For the Dis-ARM system, we would like for the follow- 
ing to be true 

Va, i, j VY # G %:j) < E(&) (14) 

where G represents the gate resource type. That is, we 
would like each agent to finish executing their service 
goals requiring gates before starting to execute other ser- 
vice goals. 

If the order distribution is not balanced evenly among 
agents we have the possibility that an agent (say B) may be- 
gin to schedule at time tl a non-gate resource type Y # G 
before another agent A has finished all of its gate assign- 
ments: 

(15) 

This creates an increase in agent A’s rating of goals requir- 
ing resource type Y ,  and at some time t 2  > tl we may have 

E(SBy,i) = .WSAG,j) = tl 

I 
Resource type 
Gates 
Fuel trucks 
Catering trucks 
Service trucks 
Baggage trucks 
Cleaning trucks 

and thus 
E(&) < E(SAG,l> (17) 

which violates our desired condition that all agents schedule 
gates before any other resource type. 

In the next section we present coordination mechanisms 
for addressing the problems of poaching and distraction and 
the results of experiments for testing their effectiveness. 

Number of resources: 
Agent 0 Agent 1 Agent 2 

17 16 16 
6 6 6 
4 4 4 
1 2 2 

1 1  1 1  1 1  
3 3 2 

1 

4. Discussion of experimental results 

In the following sections, we present coordination mech- 
anisms for addressing the problems of poaching and dis- 
traction, and we present the results of experiments for test- 
ing their effectiveness. We show the effect of adding these 
mechanisms to two reference systems: (1) a system in 
which agents only have a local view of resource availability 

Number of orders: 

16-20 

Table 1. Order distribution among agents for 
each set of experiments. 

and demand (which we refer to as the “local-view heuris- 
tic”) and (2) a system in which agents exchange texture 
measures for building a global view of resources (which we 
refer to as the “texture-based heuristic”). 

Because of the complexity of interactions among 
scheduling agents, the addition of our new coordination 
mechanisms does not guarantee an increase in scheduling 
performance in all cases. For some individual runs, we ob- 
serve a decrease in performance, but on average, the system 
performance increased significantly. Performance is mea- 
sured in terms of the total tardiness in the schedules of all 
agents (and thus, smaller numbers are better with zero tar- 
diness being the best). 

Each set of experiments consists of 21 runs, grouped 
into five different load distribution conditions (see table 1). 
Each run within a condition has a different order distribu- 
tion among three agents (orders were assigned randomly). 
Orders are taken from a set of 49 actual Northwest Airlines 
flights requiring service at Detroit Metropolitan Airport dur- 
ing a one hour period. Resources are distributed more or 
less evenly among the agents for all runs. The total number 
of resources is set to be minimally sufficient for satisfying 
the requirements of the 49 orders. Table 2 gives the exact 
resource distribution among the three agents. 

We include one order distribution that assigns all 49 or- 
ders to a single agent in order to approximate a central- 
ized scheduler. It is an approximation in that one agent 
must schedule all of the orders but it does not own all the 
resources and will need to request resources from other 
agents. Because the other agents do not have any orders 
of their own to schedule, these requests will be handled 
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Local-view hewtsttc only c 
Local-view heurislh? + anti-poaching mech. -+- 

2 20 

c 20- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' In- 
U -  

6 -60 - 
1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 

Runt  

(a) 

Teaiur heuristic only c 
ĉ  140 l l l l l r l l r l l l l l '  ' " "  
t 120 Texhlre heUrIS1IC + anti-p ching mech. -+- 
D 100 

U 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I9 20 21 
Run U 

-1201 8 3 " " h a a ' a a 3 8 ' I 

Local-view heuristic only t 
Local-view heuristic + gate coordination -t- i .E 80 

5 60 

; 40 E 20 

+--+--+ 

0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
Run Y 

(a) 

Teaiur heuristic only c 
- 140 ' ' ' ' ' ' ' ' ' ' ' ' ' ' '  " ' * '  
L 120 Texture heuristic + gal coordmalm -t- 
D 100 

1 2 3 4 5 6 7 8 9 10 Run 11 I 12 13 14 15 16 17 18 19 20 21 

Figure 4. Change in performance due to the 
addition of the anti-poaching mechanism to 
the (a) local and (b) texture heuristics. 

Figure 5. Change in performance due to the 
addition of the gate coordination mechanism 
to the ((a) local and (b) texture heuristics. 

promptly. This "centralized" scenario produced very good 
results indicating that the tardiness we encounter during 
scheduling is, in fact, an artifact of the asynchronous and 
distributed nature of the system. 

4.1. Anti-poaching mechanism 

We hypothesize that in order to prevent poaching, agents 
need to communicate goal ratings for their top n service 
goals in addition to information about resource supply and 
usage in the texture measures. By exchanging this in- 
formation agents can determine whether their top priority 
scheduling activities would poach on another agent's activ- 
ities. Our anti-poaching mechanism works as follows: Be- 
fore scheduling a service goal, each agent checks whether 
the goal is rated above a given threshold and therefore ac- 
cessing a highly contested resource. It then checks whether 
any other agent has a service goal that is rated much more 
highly (where "much" is a parameterized value) than its 
own, and if so the agent will not schedule its service goal 
but instead idle to avoid a possible poaching activity. 

Both heuristics show a significant performance increase 
with the addition of the anti-poaching coordination mecha- 
nism. Figure 4 shows the change in total tardiness observed 
in our experiments, and table 3 shows the mean change in 
total tardiness along with the significance value p for the 
matched-pair t-test. 

It is interesting to note that the anti-poaching mecha- 
nism improves performance for the local heuristic as well 
as the texture heuristic. Our mechanism is based on ex- 
changing information about agents' goal ratings and as- 
sumes that these ratings are comparable so that the decision 
about which agent has the more constrained goal is correct. 
With the texture-based heuristic, agents are able to build 
a view of global resource constraints and thus ratings are 
comparable. With the local-view heuristic, it is not imme- 
diately obvious that ratings are comparable. However, an 
agent with a locally highly constrained resource (and corre- 
sponding highly rated goal) will benefit from the opportu- 
nity to rapidly transmit requests regarding that resource to 
other agents. 

4.2. Gate coordination mechanism 

In our AGSS domain, distraction is primarily a problem 
when agents are distracted from scheduling gates early on 
in a scheduling episode. To prevent this distraction effect, 
we have added a gate coordination mechanism to Dis-ARM 
which simply disallows scheduling of resources other than 
gates until ail1 agents have finished their gate assignments. 
Obviously, a similar heuristic can be developed for any suf- 
ficiently critical prerequisite operation in a scheduling or 
planning environment. 

Both locd and texture-based heuristics show a signifi- 
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Local -11.6 0.038 
Texture Gate -11.7 0.033 

Table 3. Mean change in performance due to 
the addition of coordination mechanisms. 

Anti-poach -24.6 O.OOO1 
-18.6 0.0001 

Table 4. Mean difference in performance be- 
tween the local and texture heuristics with 
and without coordination mechanisms. 

cant performance increase with the addition of the gate co- 
ordination mechanism. Figure 5 shows the change in total 
tardiness observed in our experiments, and table 3 shows 
the mean change in total tardiness along with the signifi- 
cance value p for the matched-pair t-test. 

4.3. Effectiveness of texture measures 

In previous work, Neiman et. al. have shown the ef- 
fectiveness of using the information contained in the com- 
municated texture measures for scheduling [9, 101. Here, 
we present a similar comparison of scheduling performance 
with and without the use of texture measures. The follow- 
ing data are the same as those presented in the previous two 
sections, but are displayed so that the texture-based heuris- 
tic and local heuristic are directly compared. 

Figure 6 shows the difference in performance between 
the local and texture heuristics with and without additional 
coordination mechanisms. Even though the local heuristic 
does gain by using the additional mechanisms, the texture 
heuristic still performs significantly better when using the 
same coordination mechanisms. Table 4 shows the mean 
difference in total tardiness and significance value p for the 
three cases. 

4.4. Effect of mechanisms on parallelism 

While our coordination mechanisms decrease total tar- 
diness in flight schedules, they also decrease parallelism 
which in turn may lead to increased run times. We have 
found that on average, run times in fact do not increase and 
in some cases even decrease. This is due to fewer back- 
tracking episodes; by enforcing idleness in agents that may 
be about to poach or distract, the mechanisms reduce the 
number of mistakes that must be undone later. The amount 
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Figure 6. Difference in performance between 
the local and texture heuristics with and with- 
out coordination mechanisms. 

of time spent idle is compensated by avoiding costly chains 
of backtracking. 

Table 5 shows the mean change in the total number of 
knowledge source (KS) executions (a measure of system 
run time) and the mean change in number of KS executions 
that are preemptions (a measure of backtracking) due to the 
addition of each mechanism for both heuristics tested. The 
table also includes the p-value significance for the paired 
t-test for each condition. 

We see that in most cases, there is a decrease in system 
run time and in the amount of backtracking performed. One 
exception was that the addition of the anti-poaching mech- 
anism to the local heuristic did not significantly change the 
run time or amount of backtracking performed. This is not 
unexpected because the anti-poaching mechanism is only 
truly effective if the underlying system makes use of non- 
local information about goal ratings. 
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1 Heur./Mech. 11 B;;yl {6 I E K ; ~ p t  Op7 1 
LocaVAnti-poach 
LocaVGate -77.5 0.002 0.04 

Texture/Gate -112.1 0.003 -7.8 0.004 
Texture/Anti-poach -99.5 0.04 -9.9 0.02 

Table 5. Mean change in total number of KS 
executions and mean change in number of KS 
executions that are preemptions. 

5. Conclusions and future work 

In an attempt to understand better the issues involved in 
distributed scheduling we have investigated in detail the dy- 
namic behavior of the Dis-DSS scheduler. In doing so, we 
have observed poaching and distraction events affecting the 
performance of the distributed scheduling system and have 
developed simple mechanisms to reduce or eliminate such 
events. Our mechanisms suggest that in addition to state in- 
formation about resource availability, agents need to model 
the likely future actions of other agents. 

While our mechanisms have been shown to increase 
schedule quality, they are also highly serializing. By enforc- 
ing idle time for agents that are about to poach or distract, 
the mechanisms we have described reduce the parallelism 
that is the raison d’2tre for distributed systems. Although 
we have shown that this reduction in parallelism does not 
increase the system run time, we hope to develop more so- 
phisticated mechanisms that prevent agents from poaching 
or distracting while allowing them to pursue other schedul- 
ing activities that will not negatively affect other agents. 

We also plan to develop a more general model of dis- 
tributed scheduling that can describe poaching and distrac- 
tion behaviors in a domain-independent way. We hope to in- 
vestigate related work such as Decker and Lesser [2] ,  which 
uses a commitment framework for coordinating agents, 
and Liu and Sycara [8], which augments standard dispatch 
scheduling with a look-ahead coordination mechanism. 

Finally, the complexity of a real-world domain such as 
the AGSS has limited us to studying relatively small prob- 
lem instances. A better understanding of distributed sys- 
tems may be gained by looking at problem instances with 
many more orders and scheduling agents. In the near term, 
we plan to continue testing our system on additional sets 
of orders to give us a better understanding of the issues in 
distributed scheduling. 
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