SPT: Distributed Sensor Network for Real Time Tracking -

Bryan Horling, Régis Vincent, Roger Mailler, Jiaying Shen,
Raphen Becker, Kyle Rawlins and Victor Lesser
University of Massachusetts
Dept. of Computer Sciences
Amherst, MA 01003

{vincent,bhorling,mailler,jyshen raphen,rawlins,lesser } @cs.umass.edu

ABSTRACT

In this paper we describe our solution to a real-time dis-
tributed resource allocation application involving distributed
situation assessment. The hardware configuration consists
of a set of reconfigurable sensors at fixed locations, each hav-
ing local processing and low-bandwidth communication ca-
pabilities with other sensor nodes. The objective is to track
objects moving in the environment in real-time as best as
possible, given uncertainty and constraints on sensor loads,
communication, power consumption, action characteristics,
and clock synchronization. Once the target is detected, the
sensors must communicate and cooperate so that, within a
given window of time, the data needed to triangulate the
position of the target can be collected. Our solution to this
problem decomposes the environment into a number of sec-
tors, where individual sensor nodes in a sector are specialize
dynamically to address different parts of the goal. We de-
scribe our solution to this problem in detail, including the
high-level architecture and a number of the more interesting
implementation challenges. Results and future direction are
also covered.

(Video available at:
http://mas.cs.umass.edu/research/ants/ANTS.mov)

1. INTRODUCTION

Distributed vehicle monitoring as an example application
of distributed situation assessment and more generally dis-

*Effort sponsored in part by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Labo-
ratory Air Force Materiel Command, USAF, under agree-
ments number F30602-99-2-0525 and DOD DABT63-99-1-
0004. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. This material is also
based upon work supported by the National Science Foun-
dation under Grant No. IIS-9812755. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency (DARPA), Air
Force Research Laboratory or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

tributed resource allocation has been a problem studied ex-
tensively in the MAS community since its infancy [5][6][4].
To our knowledge, this work has been done in simulation,
and not dealt with real-time issues of coordination and re-
configurable sensors, so that they are focused appropriately
to track the desired object. This paper describes our work on
a distributed vehicle monitoring application involving actual
hardware. The hardware configuration consists of four radar
sensors with associated processors (see figure 6) at fixed lo-
cations connected through a low-bandwidth radio frequency
(RF) communication channel.

The goal of this application is to track one or more tar-
gets that are moving through the sensor environment. The
radar sensor measurements consist of only amplitude and
frequency values, so no one sensor has the ability to pre-
cisely determine the location of a target by itself. The
sensors must therefore be organized and coordinated in a
manner that permits their measurements to be used for tri-
angulation. In the abstract, this situation is analogous to a
distributed resource allocation problem, where the sensors
represent resources which must be allocated to particular
tasks at particular times, in order for the tasks to be ef-
fectively coordinated. Additional hurdles include a lack of
reliable communication, the need to eventually scale to hun-
dreds or thousands of sensor platforms, and the ability to
reason within a real time, fault prone environment. In this
paper, we will describe our solution to this problem.

The available sensor platforms have three scanning re-
gions, each a 120 degree arc encircling the sensor (see fig-
ure 1A). Only one of these regions can be used to perform
measurements at a time. The communication medium uses
a low-speed, unreliable, radio-frequency (RF) system over
eight separate channels. Messages cannot be both transmit-
ted and received simultaneously regardless of channel assign-
ment, and no two agents can transmit on a single channel
at the same time without causing interference. The sensor
platforms are capable of locally hosting one or more pro-
cesses, which share a common CPU. Our solution populates
each sensor platform with a single agent process, and we will
use the terms sensor, agent and node interchangeably in this
paper. Targets move through the environment in an arbi-
trary pattern as the scenario progresses. We assume that
agents have basic knowledge of themselves (i.e. position,
orientation, capabilities, etc.). Unless specified, all other in-
formation must be communicated by other agents over the
RF medium.

This problem has several key elements that make it an
interesting domain for exploration, including the need for
strong coordination of activities, limited resources, a real-
time environment, and varied sources of uncertainty.

Figure 1: High-level architecture. A: sectorization of the environment, B: distribution of the scan schedule,
C: negotiation over tracking measurements, and D: fusion of triangulation data.

The need to triangulate an target’s position requires fre-
quent, closely coordinated actions amongst the agents - ide-
ally three or more sensors performing their measurements at
the same time. In order to produce an accurate track, the
sensors must therefore minimize the amount of time between
measurements during triangulation, and maximize the num-
ber of triangulated positions. Ignoring resources, an optimal
tracking solution would have all agents capable of tracking
the target taking measurements at the same precise time
as frequently as possible. Restrictive communication and
computation, however, limits our ability to coordinate and
implement such an aggressive strategy. Low communication
bandwidth hinders complex coordination and negotiation,
limited processor power prevents exhaustive planning and
scheduling, and restricted sensor usage creates a tradeoff
between discovering new targets and tracking existing ones.

Another interesting aspect of the environment is that it is
real-time. A viable solution must consider issues such as the
amount of time it takes to do meta-level activities, schedul-
ing tasks with unknown or estimated execution durations
and coordinating individual sensor platforms in the absence
of a globally synchronizing clock.

Each of these factors contributes to a large degree of un-
certainty. Noisy measurements, unreliable communications,
varying hardware speeds, and sensor availability also make
knowing a target’s precise location and velocity very diffi-
cult. This in turn makes predicting and planning for future
events more difficult, which subsequently increases usage of
resources when unreliable data directs high level reasoning
to incorrect conclusions and actions.

In the remainder of this paper, we will describe our so-
lution which attempts to solve these complicated problems.
We will describe how we have adapted our existing agent
framework, JAF [3], by modifying our execution module
to work in parallel, adding a partial order scheduler that
takes advantage of parallelizable tasks and used TAEMS [1]
to model meta-level tasks to handle the transition to a real-
time environment. We will also discuss the agent organiza-
tion, negotiation protocols, and high-level problem solving
that we believe provide us with a robust, scalable and ex-

tendible solution to the problems of limited resources and
uncertainty. Next, we present results from testing which has
been done in both in simulation and on actual hardware. Fi-
nally, we conclude the paper by discussing future work and
directions for the project.

2. HIGH-LEVEL ARCHITECTURE

As noted above, our overall objective is to track targets
with the highest possible accuracy. At the same time, our
solution must be scalable, robust in face of hardware failure,
handle communication unreliability, and be able to conserve
scarce resources, such as the battery that powers the sensor
node. The high-level architecture described below attempts
to address these issues.

The environment itself is divided into a series of sectors,
each a non-overlapping, identically sized, rectangular por-
tion of the available area, shown in figure 1A. The purpose
of this division, as will be shown below, is to limit the inter-
actions needed between sensors, an important element of our
attempt to make the solution scalable. In this figure, sensors
are represented as divided circles, where each 120 degree arc
represents a direction the node can sense in. Although not
represented, sensor nodes may also have heterogenous ori-
entations and effective ranges. As agents come online, they
must first determine which sectors they can affect. Because
the environment itself is bounded, this can be trivially done
by providing each agent the height and width of the sec-
tors. The agents can then use this information, along with
their known position and sensor radius, to determine which
sectors they are capable of scanning in.

Within a given sector, agents may work concurrently on
one or more of several high level goals: managing a sec-
tor, tracking a target, producing sensor data, and processing
sensor data. Each sector will have a single sector manager,
which serves as the locus of activity for a given sector. This
manager generates and distribute plans (to the sensor data
producers) needed to scan for new targets, provides direc-
tory services, and assigns target managers. Target managers
are responsible for directing efforts to pinpoint and track

known targets. Each known target in the environment will
have a single track manager assigned to it, a role which can
potentially move from one agent to another as the target
moves. Agents producing sensor data perform the low level
task of issuing commands to sensors and gathering the re-
sulting data. Data processors take in sensor data and use it
to generate target location and track information.

The scenario starts with agents determining what sectors
they can affect, and which agents are serving as the man-
agers for those sectors. Ideally, the sector managerial duty
would be delegated and discovered dynamically at runtime,
but due to the lack of a broadcast capability in the RF com-
munication medium, we statically define and disburse this
information a priori. In figure 1, managers are represented
with shaded inner circles. Once an agent recognizes its man-
ager(s), it sends each a description of its capabilities. This
includes such things as the position, orientation, and range
of the agent’s sensor. The manager then has the task of us-
ing this data to organize the scanning schedule for its sector.
The goal of the scan schedule is to use the sensors available
to it to perform inexpensive, fast sensor sweeps of the area,
in an effort to discover new targets. The manager formu-
lates a schedule of where and when each sensor should scan,
and negotiates with each agent over their respective respon-
sibilities in that schedule (see figure 1B). The manager does
not strictly assign these tasks - the agents have autonomy to
themselves decide what action gets performed when. Given
that sensors can potentially scan in multiple sectors, there is
also the possibility that an agent may receive multiple, po-
tentially conflicting requests for commitments. The agent
itself is responsible for detecting and resolving these con-
flicts. If one receives conflicting requests for commitments,
it can elect to delay or decommit as needed. Shaded sensors
in the previous figure show agents receiving multiple scan
schedule commitments.

Once the scan is in progress, individual sensors report any
positive detections to the sector manager which assigned
them the originating scanning task. Internally, the sector
manager maintains a list of all local track managers, and
location estimates for the targets they are tracking, which
it uses to determine if the sensor detected a new target, or
one which is already being tracked. If the target is new, the
manager selects one of the agents in its sector, using locally
available expected load knowledge, to be the track manager
for that target. The assigned track manager (shown in figure
1C with a blackened inner circle) is responsible for organiz-
ing the tracking of the given target. To do this, it must
first discover sensors capable of detecting the target, and
then negotiate with members of that group to gather the
necessary data. Discovery is done using the directory ser-
vice provided by the sector managers. One or more queries
are made asking for sensors which can scan in the area the
target is predicted to occupy. For triangulation to be possi-
ble, three or more agents must scan the target at the same
time, or within a relatively small window of time (within
one second or so). The track manager must therefore de-
termine when the scans should be performed, considering
such things as the desired track fidelity and time needed to
perform the measurement, and negotiate with the discovered
agents to disseminate this goal (see figure 1C). As with scan-
ning, conflicts can arise between the new task and existing
commitments at the sensor, which the agent must resolve lo-
cally. Importance values placed on individual commitments
allow for discrimination among them.

The data gathered from individual sensors is sent to an-

other agent (possibly the track manager itself), responsible
for fusing the data and extending the computed track (see
figure 1D). If enough measurements are performed, and they
occur within the same window of time, and the data values
returned are of high enough quality, then they are used to
triangulate what the position of the target was at that time.
This data point is then added to the track, which itself is
distributed back to the track manager to be used as a pre-
dictive tool when determining where the target is likely to
be in the future. At this point the track manager must again
decide which agents are needed and where they should scan,
and the sequence of activities is repeated.

More details on the exact mechanisms and technologies
used in this architecture can be found in the following sec-
tions.

3. IMPLEMENTED TECHNOLOGIES

3.1 Java Agent Framework

We use the Java Agent Framework (JAF) [3] as the foun-
dation to our implemented solution. JAF is a component-
oriented framework, similar to Sun’s JavaBeans technology.
The JAF framework consists of a number of generic com-
ponents that can be used directly or subclassed, along with
a set of guidelines specifying how to implement, integrate,
and use new components. Components can interact in three
different ways, each having different flexibility and efficiency
characteristics: direct method invocation, through event (mes-
sage) passing among components, or indirectly through shared
data.

JAF was designed with extensibility and reusability in
mind. The use of generic components, or derived compo-
nents with similar APIs, allows for a plug-and-play type ar-
chitecture where the designer can select those components
they need without sacrificing compatibility with the remain-
der of the system. The designer can therefore pick and
choose from the pre-written components, derive those that
aren’t quite what they need, and add new components for
new technologies. For example, generic components exist to
provide services for such things as communication, execu-
tion and directory services. In the environment presented in
this paper, special facilities are needed for communication
and execution. Derived versions of these two components
were written, overriding such things as how messages are
sent or how certain actions are performed. The communica-
tion component was also extended to provide a reliable mes-
saging service, using sequence numbers, acknowledgements
and retransmits to cope with the unreliable RF medium.
These derived components were then inserted in place of
their generic counterparts within the agent. The unmodified
directory service component can still make use of the com-
munication component, and if needed, communication can
also use the directory services. In all, 17 components were
used in the agents described in this paper: 10 were generic,
3 were derived, and 4 were new. This translates to roughly
20,000 lines of reused, domain independent code, and 8,000
lines of domain dependent code. The specific components
which were used to create the agents are: Control, Log,
State, Execute, Communicate, WindowManager, Observe,
Sensor, ActionMonitor, PreprocessTaemsReader, Directory-
Service, ResourceModeler, PartialOrderScheduler, Periodic-
TaskController, ScanScheduler, Coordinate, and AntProb-
lemSolver.

While layers of abstraction and encapsulation certainly
are not new ideas, their incorporation into this architecture

Setup_Hardware

o_sef_min

Obtain-Background-Noise
Qe min

Activate-S torﬁo” tivate torﬁl“Ac' t

tor_2 H Wait-2-Seconds H Set-Time-Synch HSet—Recewe H Set-Msrment-Duration HSet—Sample—Slze HSet—Seclor HPerform—Msrmem Hcalchkgrd

[Produces 7.0 76] [Produces 8.0_o2]

[consumes_6.0_85] [consumes 7.0 34]

[Produces 6.0 4]

Limits_8.0

Produces2.0 95" Produces3.0_49 /

Produces5.0_9

Consumes4.0_88
Z T

Consumes2.03] | Consumes3.0 40
Limits2.0

0.0/997.0/1000.0

Figure 2: An abbreviated view of the sensor initialization TAMS task structure.

is important because they both facilitate construction and
motivate reusability and clean software design. A variety of
components currently exist in JAF, providing services from
logging and state maintenance to scheduling and problem
solving.

32 TAEMS

TAEMS , the Task Analysis, Environmental Modeling and
Simulation language, is used to quantitatively describe the
alternative ways a goal can be achieved [1, 2]. A TEMS task
structure is essentially an annotated task decomposition tree.
The highest level nodes in the tree, called task groups, rep-
resent goals that an agent may try to achieve. The goal of
the structure shown in figure 2 is Setup-Hardware. Below a
task group there will be a set of tasks and methods which
describe how that task group may be performed, including
sequencing information over subtasks, data flow relation-
ships and mandatory versus optional tasks. Tasks represent
sub-goals, which can be further decomposed in the same
manner. Setup-Hardware, for instance, can be performed by
completing Startup, Init, and Obtain-Background-Noise.
Methods, on the other hand, are terminal, and represent
the primitive actions an agent can perform. Methods are
quantitatively described, in terms of their expected qual-
ity, cost and duration. Activate-Sector_0, then, would be
described with its expected duration and quality, allowing
the scheduling and planning processes to reason about the
effects of selecting this method for execution. The quality
accumulation functions (QAF) below a task describes how
the quality of its subtasks is combined to calculate the task’s
quality. For example, the q-min QAF below Init specifies
that the quality of Init will be the minimum quality of
all its subtasks - so all the subtasks must be successfully
performed for the Init task to succeed. Interactions be-
tween methods, tasks, and affected resources are also quan-
titatively described. The curved lines in figure 2 represent
resource interactions, describing, for instance, the produces
and consumes effects method Set-Sample-Size has on the
resource SensLock, and how the level of SensLock can limit
the performance of the method.

TAEMS structures are used by our agents to describe how
particular goals may be achieved. Rather than hard coding,
for instance, the task of initializing the sensor, we encode the
various steps in a T/AEMS structure similar to that shown in
figure 2. This simplifies the process of evaluating the alter-
native pathways by allowing the designer to work at a higher
level of abstraction, rather than be distracted by how it can
be implemented in code. More importantly, it also provides
a complete, quantitative view that can be reasoned about
by planning, scheduling and execution processes. A given

task structure begins its existence when it is created, read
in from a library, or dynamically instantiated from a tem-
plate at runtime. Planning elements are involved both in
the generation of the structure, and then in the selection of
the most appropriate sequence of methods from that struc-
ture which should be performed to achieve the goal. This
sequence is then used by a scheduling process to determine
the correct order of execution, with respect to such things
as precedence constraints and resource usage. Finally, this
schedule will be used by an execution process to perform
the specified actions, the results of which are written back
to the original task structure.

The schedules produced by individual TAEMS structures
are the building blocks for an agent’s overall schedule of ex-
ecution. A valid schedule completely describing an agent’s
activities will allow it to correctly reason about and act upon
the deadlines and constraints that it will encounter. Typ-
ically, however, schedules are only used to describe lower-
level activity - in this domain, this encompasses sensor ini-
tialization, scanning and tracking activity, data fusion and
the like. An important class of actions, so called meta-level
activity, is missing from this list. Meta-level activities are
the high-level functions which enable the lower-level activ-
ities. These include such things as scheduling, negotiation,
communication, problem solving and planning. Without ac-
counting for the time and computational resources these ac-
tions take, the schedule will be incomplete and susceptible
to failure. In this study, we have begun accounting for these
activities by including negotiation and coordination activi-
ties in our TAEMS task structures. From a scheduling and
execution perspective, a negotiation sequence is just like any
other action - it will have some expected duration and cost,
a probability of success, and some level of required compu-
tational resources. By modeling negotiation sessions as a
task structure, we are able to cleanly account for and sched-
ule the time required to perform them, thus improving the
accuracy of our schedules. In the future we will explore
additional modeling of other meta-level activities, includ-
ing planning and scheduling. We currently handle the time
for these activities implicitly by adding slack time to each
schedule. This is accomplished by reasoning with the max-
imum expected duration time for a given schedule, rather
than the average time.

3.3 Real-Time Control

The very nature of this project has forced us to take a close
look all components that were part of our agent architecture
and evaluate their capability to run in real-time. Originally
our agents had just a single goal and sequential execution.
If additional goals were requested, the agent had to merge

the task structures together and then re-plan and reschedule
all the actions. This solution was clearly expensive and slow
and not optimal for our real-time needs. We needed a new
agent control architecture that could easily add new goals
at any time, plan the methods required to achieve it and
integrate the new methods in the current schedule. Though
this is not optimal, it significantly reduces the planning and
scheduling overhead. We have already accomplished this by
separating the previously integrated functionalities of plan-
ning and scheduling. The planning component is in charge
of selecting the set of methods required to achieve the goal,
without dealing with the resources needed by the methods.
The planner does have to generate a plan that is compati-
ble with all the criteria given by the requester and by the
problem solver (especially with respect to duration, cost and
minimum quality). You can view this process as if the plan-
ner works only in an ideal world where it has all the resource
it needs. The scheduler then takes this plan and gener-
ates a partial ordered schedule where all precedence rela-
tionships and deadlines are explicitly represented. A partial
ordered schedule differs from a linear schedule by only or-
dering methods that have relationships between them and
by not imposing any order to methods that has no relation-
ships between them. Using this partially ordered schedule,
the scheduler binds resources for all the methods and at-
tempts to parallelize execution as much as it can.

We use a resource modeler to keep track of the known re-
source uses. The partial ordered scheduler uses the resource
modeler as a database to find slot available for inserting new
method in the current schedule. Once all the methods of the
new plan can be inserted in the current schedule without
breaking any deadlines or constraints, the new schedule is
then published inside the agent as the new current schedule.
The partial order scheduler is also responsible for propagat-
ing constraints inside the schedule, especially the deadline
constraints. If a goal has a deadline, this deadline is propa-
gated to all methods involved to achieve this goal, so every
method has their own execution window in correlation with
the global goal deadline. This feature is used by other agent
components, such as negotiation, to compute the flexibility
they have on method execution time. The execution win-
dow is maintained as new constraints arrive, like new goals
or resource conflicts. If a constraint is broken, for instance
by an event like execution taking longer than expected, the
scheduler detects the constraint violation and delegates the
problem to a conflict resolution module that will choose be-
tween the conflicting tasks.

By parallelizing the execution, we can reduce the total
execution time which increases the agents overall work ca-
pacity. The gain in execution time (difference between the
original deadline and the end of the parallelized schedule)
is also used to accommodate any resource binding problem,
or more importantly, allows the scheduler to accommodate
real-time changes without breaking the deadline constraints.
The big advantage of the partial order scheduler is to be
able to quickly shift methods’ execution order at any point
in time instead of doing costly re-planning [9]. In a real-time
environment schedule adjustments are more frequent; by not
imposing unnecessary ordering constraints on our agent’s
schedule the the agent has a better chance of achieving the
time, cost and quality criteria of its goal. We also attempt
to reduce scheduling overhead by caching and reusing plans
from similar task structures.

Flexibility in the schedule should propagate to the ex-
ecution subsystem. In this agent control architecture, we

augment our existing execution component by adding two
new features. First of all, the execution module can use the
partial order scheduler to get a list of all methods which
can be currently executed. The partial order scheduler will
check that all the preconditions of a method are true before
authorizing the execution. The second extension allows the
agent to pause any currently executing method at anytime
and to resume it later. This very powerful mechanism allows
our agent to suspend working on goal if a more important
goal has arrived. Later, when the important job is done, it
can resuming work on the first goal. This mechanism is very
similar to a UNIX kernel scheduling [8].

In the next section, we will describe how our negotiation
module will assign the importance values used to resolve
conflicting tasks.

3.4 Negotiation

In this environment, communication costs and time con-
straints make traditional complex negotiation difficult. On
the other hand, some type of negotiation is still needed to
effectively delegate tasks for tracking and scanning for the
target. Because of these characteristics, we designed a sat-
isficing negotiation protocol for periodic tasks to solve the
problem.

In a periodic task, an instance of the task will be repeat-
edly performed along the time line (see Figure 3). For every
period, the actual scheduling of the task instance can be
moved around, as long as it is done once during that period.
For example, once an agent commits to a tracking task, it
is expected to track the target at the specified sector pe-
riodically until the target moves out of the agent’s range.
Whenever possible, we represent tasks as periodic, based on
the repetitive nature of the underlying commitments, and
the tight communication constraints of the environment.

Period 1 Period 2 Period 3
| | |

Jr

Start Deadline Start Deadline Start Deadline Time

Figure 3: Periodic task example: Three periods of
a task are shown, each action of the task can be
shifted within a specified start time and deadline.

Every task is assigned an importance value, to permit dis-
crimination between conflicting tasks. As an example, when
the sector manager creates a scan schedule, it will assign an
importance value to each scan task needed by the schedule,
based on the absolute location of the agent’s sensor. For
instance, the agents along the edge of an area are assigned
higher importance because they are more likely to detect
new targets. If the area covered by an agent can be seen by
other agents, a lower importance value is assigned. For a
tracking task, three factors influence the importance value:
how many candidates there are for this task, how many con-
secutive data points have been missed for this task and the
appropriateness of the agent to perform the task. The ap-
propriateness of an agent to perform a task is based on the
location of the sensor, the workload of the agent, the pre-
dicted future of the target, and the tracking history of the
agent.

We lay out the continuous negotiation protocol for peri-
odic tasks as follows. Upon generating a new periodic task,
the manager starts a new negotiation session by sending a
proposal to the agent, specifying the task, its periodicity,

and importance value. When receiving the proposal, the
agent does a “temporary” schedule of the periodic task for
several periods. If this task can be placed in to the sched-
ule without conflict, the agent will commit to the periodic
task. Otherwise, it will either refuse outright or counter-
propose a different period for the task. The manager will
then record the commitment, consider the counterproposal,
or if a refusal is received, consider other candidates. The
agent who has committed to the task will attempt to sched-
ule during each period. If it fails, the agent will compare
the importance values of the conflicting tasks. The higher
importance task will take precedence and be scheduled. For
the task of lower importance value, a negotiation subses-
sion is initiated. It will decommit this period of the whole
task from the manager, which is called temporary decom-
mitment. The manager may decide to update or remove the
whole task based on the environment change. When a task
is removed, the negotiation session is ended. We call this
protocol continuous since the negotiation session is subdi-
vided into subsessions and continues until the whole task is
revoked.

We apply this protocol in our problem. The target man-
ager starts a negotiation session by sending a proposal to
the sensor agent, specifying time, period, orientation and
the importance value of the task. When receiving the pro-
posal, the sensor agent does some initial reasoning and ei-
ther commits to or refuses the task. The sensor agent who
has committed to the task will schedule every period of the
track task. When it fails, the agent compares the impor-
tance values of the conflicting tasks. If the task of lower
importance value is a track task, it will decommit this pe-
riod of the whole task from the manager. If it is a scan task,
the agent simply removes it from the schedule and does not
report to the manager (implicit decommittal). The sensor
agent sends the data back to the target manager when the
measurement is performed. The manager decides whether
an agent can still see the target or not based on the data
it receives. It can also predict where the target will be.
When the target is moving from the current orientation of
the sensor to some other orientation of the same sensor, the
manager will send an update message to tell the agent about
this change. When the agent can no longer see the target,
the manager will tell it to remove the committed track task,
and the negotiation session will end.

In the future, we will extend this single shot protocol to
multi-stage negotiation. Manager to manager negotiation
will be added to increase efficiency in multi-linked scenar-
ios. We will also design appropriate evaluation metrics to
compare the protocols in environments possessing different
communication characteristics.

3.5 Directory Services

The generic directory service component is capable of stor-
ing arbitrary textual data. Individual entries consist of one
or more named fields, each of which will contain data. The
directory itself possesses a set of one or more descriptions,
which specify the type of data they are willing to accept.
As a directory receives an entry to be added, it checks it
against each of its descriptions, and if any match, the en-
try is added. Queries may be made to local or remote di-
rectories. The syntax for entry descriptions and queries is
the same, consisting of a series of boolean, arithmetic or
string expressions. The functionality of the directory itself
is generic, and thus can serve as the supporting structure
for a number of different directory paradigms, such as yel-

Figure 4: The track visualization tool gives informa-
tion about estimated target location versus the ac-
tual target location. A shows the actual amplitude
rings returned by the sensors, B shows the same
rings without the effects of noise.

low pages, blackboards or brokers [7].

In our system, directory services are used in a yellow pages
capacity, to centralize and disseminate information, thereby
limiting the amount of communication needed to gather in-
formation. Individual agents post their capabilities to the
sector manager’s directory, which allows one to search for
agents that can scan within a specified area. This sort of
interaction is used to both construct the scanning schedule,
and determine which agents are capable of sensing a target
at a particular location. Agents also locally store descrip-
tions of the sector managers in the environment, making it
easy for them to find the managers of their own and neigh-
boring sectors.

For example, a sector manager might have several direc-
tory entries for sensors capable of scanning in its sector.
These would take the following form:

[E SA1 [Name->SA1] [Task->Scan] [R->20]
[X->10] [Y->10] [0->60] [C->1]]

This contains such information as the sensor’s name, task,
radius, x and y position, orientation and communication
channel. Later, when, for instance, a track manager needs
to determine which nodes can scan in a given region, it might
formulate the following query:

((((((20 + R) >= X) & ((10 - R) <= X)) &

((10 + R) >=Y)) & ((0 - R) <= Y)) & (Task == "Scan"))

This query matches entries who’s x,y location falls within
a given area, offset by the sensor’s radius. In this case,
it should return all sensors which are capable of scanning
within the area (10,0),(20,10). If the region in question
spanned multiple sectors, the track manager would assimi-
late the results from several queries to different sector man-
agers.

In the future we can see the role of directory services being
expanded. Directories may automatically check outdated
entries, or send updated information to agents that have
made prior queries. Directory services are also used locally
at each agent in the system, to serve as a local cache of
remote query responses.

4. RESULTS

Because the hardware version of the environment is not
directly available to us, we used a simulated environment,
called RADSIM, to develop and test our implementation.

Error ift)

R

- ~—
R L A 1 R e T

' '
Time(s) P 214 21E 316 217 218 215 220 221 323 233 234 226 326 227 228 220 230 231 232 233

- -

. . . - - . .
Modes
-

4w e
.
.
.
.
.
.
LRI

- . -

Figure 5: Target location error (top) and agent syn-
chronization (bottom) over time.

The simulator was designed to closely emulate the actual
hardware environment and provides a common software in-
terface for our agents. We can configure RADSIM to scale
to a large number of nodes (currently we have tested up to
32) and and arbitrary number of targets (we have tested up
to 2). The target’s path can be programmed in order to test
specific aspects of our agents reasoning.

To aid in the evaluate of our results, we developed the
visualization tools seen in figures 4 and 5. The views in fig-
ure 4 allow us to compare our measured tracks against the
actual track taken by the target. The data fusion process in-
terprets the amplitude values returned by the sensors as the
ring shapes seen there, and triangulation is done by finding
the strongest point of intersection among several of those
rings. A substantial portion of the uncertainty in our solu-
tion is derived from the unavoidable noise values that affect
amplitude measurements. As can be seen by comparing A
and B in figure 4, the noise can dramatically shift the esti-
mated location of the target, which will in turn affect both
the generated track and future sensor allocations. Figure 5
shows the target location error over time, and how closely
synchronized the agents measurements are in relation to one
another. Each “dot” in the lower half of the timeline repre-
sents a measurement which was performed. An idealized run
would have each column of dots be perfectly aligned, which
would represent measurements that were completely syn-
chronized. As you can see, our measurements are relatively
aligned - each contained within a roughly 500ms window,
which is sufficiently synchronized for our purposes. These
tools allow us to easily and quickly evaluate changes that
made to the underlying architecture.

To test how well our system performs, we ran 600 test runs
of 8 minutes each while varying the reliability of communi-
cations. We chose to vary reliability of communication as a
way of seeing how our system adapted to changing timing
conditions and increased uncertainty in the actual time of
a task will take to be completed, due to the potential need
to retransmit information. We used four agents running on
Pentium IIT PCs of varying speeds. The simulator ran on a
separate machine to prevent an agent process from slowing
the simulator down. The target’s specified track can best be
described as a diamond in the center of the environment (see
figure 4A). The sensors were positioned in the environment
such that they had overlapping coverage in the center of the
environment.

A summary of the results of our testing is shown in fig-
ures 7A, 7B, and 7C. As expected, as communication loss
increases, we observe an increased RMS error of the actual
versus estimated track location, a measure of how different
the two tracks are. As communication loss increases, the
number of measurements successfully sent from the agents
to the track manger decreases. We see the exponential in-
crease in error because the track manager fails to achieve the
three synchronized measurements needed to triangulate of-

Figure 6: A: The hardware sensor platform. B: The
mobile target used in hardware tests.

ten enough. In fact, if you look at figure 7B, you can see that
the average time between updates of the track position in-
creases at a functionally equivalent rate. One positive aspect
of the tests can be seen in figure 7C. This figure shows the av-
erage duration between the earliest and latest measurement
used to do a triangulation which we call the update window.
Note that as communication becomes more restrictive, the
update window does not significantly increase. This is tes-
tament to the ability of periodic commitments to operate in
a communication degrades environment.

There are a number of interesting metrics that we have not
included at this time. For example, we would like to make
a comparison of the sensor utilization versus the number of
the targets within the environment. In addition, we would
like to explore how communications is utilized as the number
of agents increases. Both of these metrics are central to the
goal of the project and will be available when we scale up
the system.

We also conducted testing of our system on hardware. For
the hardware test, we used a configuration with four sensors
(figure 6A) on the corners of a 10 by 12 foot rectangular area.
Each of the platform had one of its sensors pointed directly
toward the center of the area. For a target, a model railroad
train with a copper radar reflector (used to increase the
signal to noise ratio) was employed. The train was placed
on an oval 9 by 6 foot track and operated at a speed of
about one foot per second (See figure 6B). The sensors were
connected to Pentium computers operating at various speed
from 333MHz to 450MHz. The agents were started and
after a one minute calibration time, the target was put in
motion. We ran the target for approximately two minutes
before concluding the test.

The results for these tests were mixed. We found that
after some initial calibration of the expected run times for
methods on the hardware, we were able to synchronize the
agents almost as precisely as on the simulator. This showed
to us that our architecture was capable of operating in a real
time environment as the simulator predicted. Unfortunately,
we were not able to track the target as accurately as we had
on the simulator. We are currently investigating the reason
for this but believe it may be simply due to a incorrect sensor
calibration.

5. FUTURE WORK

There are an abundance of areas for future exploration in
this domain. We are currently exploring the effects induced
by the scale of the system, first addressing scenarios with
six and later 32 sensor nodes. In these scenarios we must
evaluate both how the system scales in general, and how it
handles the nuances that come with these larger areas (i.e.
boundary cases for object detection, the potential for com-
munication degradation over distance). We also will explore

Average Update Time vs. comi

imunication loss. Average Update Window vs. communication loss

3500

£ 3000

2500

RMS Error
Average Update Time in

2000

1500

1 1000

100

Average Update Window in ms.

o 5 10 15 20 25 30 35 40 a5 50 0 5 10 15 20
9% of communications loss. 9% of communications.

B) Average time between
subsequent triangulations.

A) Average RMS Error for actual
versus estimated target location.

30 35 0 45 50 0 5 10 15 20 25 30 35 0 a5 50
loss 9% of communications loss.

C) Average synchronization error.

Figure 7: Performance results from 600 eight minute trials with varied communication reliability.

new, more sophisticated negotiation strategies, and investi-
gate how the details of our organizational design should be
implemented when dealing with larger roaming areas. Mul-
tiple targets will be added to the environment, increasing the
probability of conflicting, high-importance commitments. In
other scenarios the sensor platforms themselves will become
mobile, sensors may fail or be added during runtime and the
sensors may be jammed by adversaries in the environment.

6. CONCLUSIONS

In this paper we have described our solution to a real-time
distributed tracking problem. The environment is first par-
titioned, reducing the level of potential interaction between
agents. Within each sector, agents dynamically specialize to
address scanning, tracking, or other goals. The agents must
reason within a resource and communication-constrained en-
vironment, handling uncertainty in measurements, timing
and coordination. We have successfully demonstrated our
approach in both simulation and actual hardware.

A number of interesting technologies used by our agents
or implemented for this problem were described. The JAF
agent framework was used to implement the agents, allowing
the reuse of a large code base, in addition to facilitating the
construction itself. TAEMS was used to provide agents with
domain problem solving knowledge, and to model the costs
of meta-level activities. Our control architecture, including
the DTC [10]planning component, partial-order scheduler,
and resource modeler, enabled the agents to function effec-
tively in a real-time environment. Negotiation, using peri-
odic tasks capable of temporary decommital and updates,
was used to disburse tasks to agents and synchronize their
activity without significant use of bandwidth. Finally, the
directory service component provided a simple way of keep-
ing information up to date and getting that information to
the agents that needed it.

Our results indicate that our architecture is robust enough
to operate in both simulated and real world environments.
They also indicate that using a continuous negotiation pro-
tocol for periodic commitments may in fact provide the nec-
essary framework for handle the difficulties associated with
a real-time distributed resource allocation problem in a com-
munications degraded environment.

Acknowledgments

We would like to acknowledge the following organizations
for their important contributions to this research. DARPA
designed the problem space for the environment described
in this paper, called the EW Challenge Problem, as part

of the Autonomous Negotiating Teams (ANTSs) program.
Researchers at Rome Labs implemented the RADSIM sim-
ulator used to test our solution. Sanders, a Lockheed Mar-
tin company, designed and constructed the hardware sensor
platforms, and implemented libraries needed to access that
hardware and perform tracking and sensor fusion operations.

7. REFERENCES
[1] K. S. Decker and V. R. Lesser. Quantitative modeling

of complex environments. International Journal of
Intelligent Systems in Accounting, Finance, and
Management, 2(4):215-234, Dec. 1993. Special issue
on “Mathematical and Computational Models of
Organizations: Models and Characteristics of Agent
Behavior”.

[2] B. Horling et al. The teems white paper, 1999.
http://mas.cs.umass.edu/res-earch/taems/white/.

[3] B. Horling and V. Lesser. A reusable component
architecture for agent construction. Master’s thesis,
Department of Computer Science, University of
Massachusetts, Amherst, 1998.

[4] V. Lesser and D. Corkill. The distributed vehicle
monitoring testbed: A tool for investigating
distributed problem solving networks. AI Magazine,
4(3):15-33, 1983.

[6] V. R. Lesser and L. D. Erman. Distributed
interpretation: A model and an experiment. IEEE
Transactions on Computers, C-29(12):1144-1163, Dec.
1980.

[6] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Transctions on Computers,
29(12):1104-1113, 1980.

[7] K. Sycara, K. Decker, and M. Williamson.
Middle-agents for the internet. In Proceedings of
IJCAI-97, January 1997.

[8] A.S. Tannenbaum. Distributed Operating Systems.
Prentice Hall, Saddle River, 1995.

[9] R. Vincent, B. Horling, V. Lesser, and T. Wagner.
Implementing soft real-time agent control. Submitted
to Autonomous Agents 2001.

[10] T. Wagner, A. Garvey, and V. Lesser.
Criteria-Directed Heuristic Task Scheduling.
International Journal of Approximate Reasoning,
Special Issue on Scheduling, 19(1-2):91-118, 1998. A
version also available as UMASS CS TR-97-59.

APPENDI X

[EIEIE

Radsim

Caonditioned

Agent: SA1

Status: Un-updated

|[=i[=i[] gent: SAZ

Status: Un-updated

IEEIE]

agent.ants.Control agent.ants. Control

agent.simplest. ActionMonitor agent.simplest.ActionMonitar

agent simplest State

|
|
agent.simplest.State |
|

agent.simplest WindowManager agent simplest Windowhanager

EIEIE]

Taems View:

1.0 {Startup 2
T fin

1.0 [Activate-Sector_1| 1.0 [Activate-Sector.2 |
g T

20
Consumes 8017

Consumes_7.0_24

Consumes 6.0.85

[Limits_ 6.0 Produces 2.0.92

Produces 7.0 76
[Produces .04

N S N | S i L JLJL

10

P Pz 0,00
i)

Set-Time-Synchronization 2

=0

IE]

fon

l|% Terminal % Teminal | % Radsim .| 4 Agent

=gent.diagnose.model.Res ourceMadeler

agent diagnose model ResourceModeler

agent. mass. PreprocessTaemsReader agent.mass.PreprocessTaemsReader

agent. ants.Execute agent.ants.Execute

agent.ants Communicate agent.ants. Communicate

agent.ants.Coordinate agent. ants.Coordinate

agent directory DirectoryService agent.directory Directoryservice

agent.partialorder.Partial OrderScheduler agent partialorder Partial Orderscheduler

agent.ants.scanslater agent.ants.Scanslater

) N I

agent.ants. AntPeriodicTask Controller agent.ants. AntPeriodicTask Controller

agent.ants. AntProblemsolver agent.ants. AntProblemSolver

| % Agent

7||'a Agent: . ||'3 Agent

Fri Oct13
11:47 AM O‘

|#3The GIMP| 4, Congitio...

Figure 8: This screen shot shows the initialization of sensor SA2. The window in the foreground is a picture of
the TAEMS task structure for initialization in execution. Methods can be seen as rectangles and tasks can be
seen as ovals. The color of the method shows the status of its execution. Green (prints dark grey) rectangles
indicate that the method is currently being executed and red (prints light grey) indicates a completed method.
The small numbers under the methods indicates the execution order returned by the partial order scheduler.
This example actually shows an occurrence of a partial order schedule slide. Because the Activate-Sector_2
method (item 11) locks the sensor resource and took longer than expected, the Set-Observer_2 method (item
12) was delayed. Notice that it is being executed at the same time that Wait-2-Seconds in being run which
was item 20 in the execution order originally returned.

Ra

dsim Frame

[SIEIE

Radsim

Agent: SA1

ps.20

[SIEIES

Agent: SAZ HQ@@

Status: Un-updated

Status: Un-updated

agent.ants.Control

agent.ants. Control

agent.simplest. ActionMonitor

agent.simplest.ActionMonitar

agent simplest State

agent simplest State

agent.simplest. WindowManager

agent simplest Windowhanager

agentsimplest Sensor

agent. simplest Sensor

agent.simplest.Observe

agent.simplest.Observe]

=gent.diagnose model.ResourceMadeler

agent.diagnose.model.ResourceModeler |

agent.mass PreprocessTaemsRead er

agent.mass.PreprocessTaemsReader

agent.ants Execute

agent ants Execute

agent ants Communicate

agent ants Communicate

ConditionedTaems Views

Caonditioned

Taems View: scan_schedule_1

negotiate_scans_1

as.0

250 {Scanning_plan_L

do_scans_1

rSAL_0 01

5.0

Negotiate_scan _for_SA1_1_3333_1

25.0 [Megotiate_scan for_SA1_2 REE_1

[scan_nonlocal [SA1_0_0_1

[scan_nonlocal _5A1_13333.1 |

zin1

EH

= =2

E2l

fon

N

= =l Terminal | % Terminal | % Radsim .| % Agent
=527 % agent..| % Agent

agent.simplest.Observe

agent.simplest. Observe

=gent.diagnose.model.Res ourceMadeler

agent diagnose model ResourceModeler

agent. mass. PreprocessTaemsReader

agent.mass.PreprocessTaemsReader

agent ants Execute

agent ants Execute

agent.ants Communicate

agent ants Coordinate

agent. ants.Coordinate

agent directory DirectoryService

agent.directory Directoryservice

agent.partialorder.Partial Orderscheduler

agent.partialorder.PartialOrderScheduler

agent. ants.scanslarer

agent.ants Scanslater

agent.ants. AntPericdicTask Controller

»

\

|

|

, \
agent.ants.Communicate |
|

|

|

|

|

agent.ants AntPeriodicTaskController

agent.ants AntProblemsSolver

| % Agent: .|
|#3The GIMP| %, Congitia...|

agent.ants AntProblemsolver

Fri Oct13
11:44 AM O‘

Figure 9: This is a screen shot of the simulator during a scan schedule negotiation. The sector manager(agent
SA1) is negotiating with itself to perform three periodic scan tasks. Notice that negotiation for the com-
mitments is represented, scheduled and executed as a standard method. Finishing negotiation enables the
activity of scanning in the remote agent.

Radsim Frame ‘Q@E

Radsim

Agent: SAT Agent: SAZ

Status: Un-updated Status: Un-updated

agent. ants.Control agent.ants.Control

agent.simplest.ActionMonitor agent.simplest.ActienMonitor

agent.simplest.State agent.simplest.State

agent.simplest.wWindowManager agent.simplest.WindowManager

agent.simplest. Sensor agent.simplest.Sensor

agent.simplest.Observe agent.simplest.Observe

agent.diagnese model.ResourceModeler agent.diagnose. model ResourceModeler

agent.mass PreprocessTaemsReader agent.mass.Preprocess TaemsReader

@(15,19) agent.ants Execute agent.ants.Execute

agent.ants.Communicate agent.ants.Communicate

agent.ants. Coordinate agent.ants.Coordinate

agent.directory DirectoryService agent.directory DirectoryService

agent.partialorder PartialOrderScheduler agent.partialorder.Partial OrderScheduler

agent ants Scanlater agent ants Scanslater

agent.ants AntPeriodicTask Controller agent.ants AntPeriodicTaskController

agent.ants.AntProblemSalver agent.ants. AntProblemsalver

Agent SA3 Agent SA4

Status: Un-updated Status: Un-updated

20 feet

ot |
SimTime: 60500, Starus: Stopped, Debug Level: None agent.ants. Contro agent.ants. Contral

agent.simplestActionMaonitar agent.simplest. ActionMoniter

Taems View:
(spec_method
ispec_artributes
{(MessagelD Integer 35)
(Sensor Integer 3)
(Results Vectar DELIM=,
{Number Integer 1)

{NoMessage Boolean trud * —

(Manager 5tring SA1) O
(Stare tener £0410) (it e S
: :

(MumberCompleted Integ
(Type String Scan)

sched_num Integer 3
ES(aws String Ru%mng)) 1§ [Ser-Sector 0| 1.0 [Set-Collection-Mode 2| 1.0 [Set-5ample .o, oz o oo [SEE-GAIN_L
z T

. (state <un-convertible 8 B
(Resourcellses Vector DE
)
{label Perform-Measureme
{agent SA3)
] ‘:: In ks 1 ensloc Messloc
i ** Out IRs: 1

= =l Terminal |3 Terminal | 4, Radsim .| % &gent .| % Agent .| Fri Oct 13
H= 704 agent | % agent . yThe GIMR| 4 Canditin 11:52 AM

Figure 10: Here, the agents are actively scanning for a target. The simulator was set to start moving the
target at time 60000 so the target has just began to move. The sensors are currently performing a scan,
which is a periodic task, of the area and should find the target. The TAMS iewer shows the execution of
a scan task. Notice that the SensLock resource (represented as a triangle) is empty preventing other tasks
from interfering with the measurement.

[SIEIE

Radsim

SimTime: 75660,

\\\

In]

\&\‘,

Ia]

Status: Stopped,

20 feet

Debug Level: None

= Agent: SA1

Agent: SAZ

Status: Un-updated

Status: Un-updated

agent.ants.Control

agent.ants. Control

agent.simplest. ActionMonitor

agent.simplest.ActionMonitar

agent simplest State

agent simplest State

agent.simplest. WindowManager

agent simplest Windowhanager

agentsimplest Sensor

agent. simplest Sensor

agent.simplest.Observe

agent.simplest.Observe

=gent.diagnose model.ResourceMadeler

=gent.diagnose.model.Res ourceModeler

agent.mass PreprocessTaemsRead er

agent. mass.PreprocessTaemsReader

agent.ants Execute

agent ants Execute

agent ants Communicate

agent ants Communicate

agent.ants Cocrdinate

agent ants Coordinate

agent.directory DirectoryService

agent directory DirectoryService

agent.partialorder.PartialOrderscheduler

agent. partialorder.PartialOrderscheduler

agent.ants.scanslater

agent. ants.scanslater

agent.ants AntPeriodicTask Controller

agent.ants AntPericdicTask Controller

agent.ants. AntProblemSolver

agent.ants AntProblemSolver

Status: Un-updated

agent.ants Control

[Rgent.simplest ActionMonitor

agent.simplest. State

lgent.cimplest.WindowManager

agent.simplest.Sensor

agent.simplest. Observe

diagnose. model ResourceModeler

nt.mass.PreprocessTaemsReader

agent ants Execute

agent.ants.Communicate

agent. ants.Coordinate

lgent.directory. DirectoryService

partialorder PartialOrderscheduler

agent.ants Scanslater

t.ants.AntPeriodicTaskController

agent.ants AntProblemsolver

{18.6,17.8) |8.36 -8.25]

= =% Terminal | Terminal | % Radsim .| % Agent .| % Agent .|
HER 7% Agent .| % agent . | fThe GIMR| 4 Track Di..

1IN

Fri Oct13
11:54 AM

Figure 11: After locating the target, the track manager tasks sensors to track it. In this simple scenario,
all of the agents have been asked to track. Notice that all of the agents have their sensors on at the same
time. Synchronization is required in order to get a high quality location prediction. The window in the lower

center of the screen shows that estimated location of the target along with the amplitude rings used to create
that estimate.

track—367BBNARD.th ==l

fuplitude Rings [Estimated Location of Target “[Aetual Location of Target
<18 5.8 3 FHS Error = 1.33
Moiseless Rings ty | 8.8, 8.8 | = 8.0 ftosec Location ¢ 15,13, 19,87 ¥
Velocity | B, 5 | = 8.5 ftrsec
Heasurenent = Hoise Per-fect Anp, Base G.Hoise, Lk
585 - 39.465692 (1.266 16212704,
. 115722, 36.8, 31.667538, 32,6562

B

=)

" j=ed & Hoise,
39.8, 39,5322, 39534554

1 &Pl LS : 7603 5.5 — 4l. . L6 2.8, 42.03766, 41.8G313

-

=]

Conmect the Dots
3 S Hoise,
Veloaity Lines 2: 18.5: 0.6 5 a 18.212704, 39.6, 33.5322, 39.534554

.115722, 30.0, 31.687538, 32.8562
Frintsble Calors e 4

b 25.678681, 42 65, 41.83313
= Ussd S, o

i 26,3 i
Fnpl i tude Used = Measurenent - Hoise Perfect Anp,

ﬂlﬁju f.|\ 7

[=l[Bilx]

track—367860863.th

Calors

Figure 12: This screen shot shows our visualization tool for the run just competed. The upper window show
the actual vs estimated path of the target. The lower window shows the RMS error of the track as well as

the relative synchronization of the agents tracking the target.

